Classification of spectroscopic data - challenges, benchmarking and limitations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU137605" target="_blank" >RIV/00216305:26620/20:PU137605 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of spectroscopic data - challenges, benchmarking and limitations
Popis výsledku v původním jazyce
In modern spectroscopy, we are often dealing with large and highly complex datasets. As an example, in Laser-Induced Breakdown Spectroscopy (LIBS), measurements with a 1 kHz repetition rate were reported. Such a measurement often results in huge, high-dimensional data that are impossible to explore and analyze by a hand. Even more, many common methods (Principal Component Analysis + classifier, Support Vector Machines, etc.) may become insufficient and new strategies are required. Classification of large spectroscopic data is a challenging task due to the nature of spectra. Modern machine learning (ML) techniques based on artificial neural networks (ANN) are opening new possibilities, but often there is a lack of understanding in the decision processes (for classification). In this work, we extensively study modern approaches to classification with a focus on the explainability of decision factors. Innovative models with the incorporation of physics (or spectra modeling) are discussed. Besides mention
Název v anglickém jazyce
Classification of spectroscopic data - challenges, benchmarking and limitations
Popis výsledku anglicky
In modern spectroscopy, we are often dealing with large and highly complex datasets. As an example, in Laser-Induced Breakdown Spectroscopy (LIBS), measurements with a 1 kHz repetition rate were reported. Such a measurement often results in huge, high-dimensional data that are impossible to explore and analyze by a hand. Even more, many common methods (Principal Component Analysis + classifier, Support Vector Machines, etc.) may become insufficient and new strategies are required. Classification of large spectroscopic data is a challenging task due to the nature of spectra. Modern machine learning (ML) techniques based on artificial neural networks (ANN) are opening new possibilities, but often there is a lack of understanding in the decision processes (for classification). In this work, we extensively study modern approaches to classification with a focus on the explainability of decision factors. Innovative models with the incorporation of physics (or spectra modeling) are discussed. Besides mention
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů