Restricted Boltzmann Machine method for dimensionality reduction of large spectroscopic data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU136191" target="_blank" >RIV/00216305:26620/20:PU136191 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0584854720300410?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0584854720300410?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.sab.2020.105849" target="_blank" >10.1016/j.sab.2020.105849</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Restricted Boltzmann Machine method for dimensionality reduction of large spectroscopic data
Popis výsledku v původním jazyce
Multivariate data obtained using, for instance, Laser-Induced Breakdown Spectroscopy (LIBS), are quite bulky and complex. Advanced processing of spectroscopic data demands a multidisciplinary approach, covering not only modern machine learning tools but also a deep understanding of underlying physical mechanisms. Dimension reduction and visualization of large datasets is a task of significant interest in the spectroscopic data processing. Commonly employed linear techniques (e.g., Principal Component Analysis, PCA) cannot explain the correlations of higher-order which are present in the data. Even more, computational cost and memory limitations become way more relevant considering the size of “modern” LIBS data (millions of high-dimensional spectra). Methods based on Artificial Neural Networks (ANN) seem suitable for this task, and based on their success, they are given considerable attention within the spectroscopic community. We propose a new methodology based on Restricted Boltzmann Machine (ANN method) for dimensionality reduction of spectroscopic data and compare it to standard PCA. As an extension to successful reconstruction, we demonstrate a generation of new (unseen) spectra by the RBM model trained on a large spectroscopic dataset. This data generation is of great use not only for the extending measured datasets but also as a proper training state's confirmation of the model.
Název v anglickém jazyce
Restricted Boltzmann Machine method for dimensionality reduction of large spectroscopic data
Popis výsledku anglicky
Multivariate data obtained using, for instance, Laser-Induced Breakdown Spectroscopy (LIBS), are quite bulky and complex. Advanced processing of spectroscopic data demands a multidisciplinary approach, covering not only modern machine learning tools but also a deep understanding of underlying physical mechanisms. Dimension reduction and visualization of large datasets is a task of significant interest in the spectroscopic data processing. Commonly employed linear techniques (e.g., Principal Component Analysis, PCA) cannot explain the correlations of higher-order which are present in the data. Even more, computational cost and memory limitations become way more relevant considering the size of “modern” LIBS data (millions of high-dimensional spectra). Methods based on Artificial Neural Networks (ANN) seem suitable for this task, and based on their success, they are given considerable attention within the spectroscopic community. We propose a new methodology based on Restricted Boltzmann Machine (ANN method) for dimensionality reduction of spectroscopic data and compare it to standard PCA. As an extension to successful reconstruction, we demonstrate a generation of new (unseen) spectra by the RBM model trained on a large spectroscopic dataset. This data generation is of great use not only for the extending measured datasets but also as a proper training state's confirmation of the model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Spectrochimica Acta Part B
ISSN
0584-8547
e-ISSN
—
Svazek periodika
167
Číslo periodika v rámci svazku
105849
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
„NA“-„NA“
Kód UT WoS článku
000535905500004
EID výsledku v databázi Scopus
2-s2.0-85082767921