Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Restricted Boltzmann Machine method for dimensionality reduction of large spectroscopic data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU136191" target="_blank" >RIV/00216305:26620/20:PU136191 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0584854720300410?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0584854720300410?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.sab.2020.105849" target="_blank" >10.1016/j.sab.2020.105849</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Restricted Boltzmann Machine method for dimensionality reduction of large spectroscopic data

  • Popis výsledku v původním jazyce

    Multivariate data obtained using, for instance, Laser-Induced Breakdown Spectroscopy (LIBS), are quite bulky and complex. Advanced processing of spectroscopic data demands a multidisciplinary approach, covering not only modern machine learning tools but also a deep understanding of underlying physical mechanisms. Dimension reduction and visualization of large datasets is a task of significant interest in the spectroscopic data processing. Commonly employed linear techniques (e.g., Principal Component Analysis, PCA) cannot explain the correlations of higher-order which are present in the data. Even more, computational cost and memory limitations become way more relevant considering the size of “modern” LIBS data (millions of high-dimensional spectra). Methods based on Artificial Neural Networks (ANN) seem suitable for this task, and based on their success, they are given considerable attention within the spectroscopic community. We propose a new methodology based on Restricted Boltzmann Machine (ANN method) for dimensionality reduction of spectroscopic data and compare it to standard PCA. As an extension to successful reconstruction, we demonstrate a generation of new (unseen) spectra by the RBM model trained on a large spectroscopic dataset. This data generation is of great use not only for the extending measured datasets but also as a proper training state's confirmation of the model.

  • Název v anglickém jazyce

    Restricted Boltzmann Machine method for dimensionality reduction of large spectroscopic data

  • Popis výsledku anglicky

    Multivariate data obtained using, for instance, Laser-Induced Breakdown Spectroscopy (LIBS), are quite bulky and complex. Advanced processing of spectroscopic data demands a multidisciplinary approach, covering not only modern machine learning tools but also a deep understanding of underlying physical mechanisms. Dimension reduction and visualization of large datasets is a task of significant interest in the spectroscopic data processing. Commonly employed linear techniques (e.g., Principal Component Analysis, PCA) cannot explain the correlations of higher-order which are present in the data. Even more, computational cost and memory limitations become way more relevant considering the size of “modern” LIBS data (millions of high-dimensional spectra). Methods based on Artificial Neural Networks (ANN) seem suitable for this task, and based on their success, they are given considerable attention within the spectroscopic community. We propose a new methodology based on Restricted Boltzmann Machine (ANN method) for dimensionality reduction of spectroscopic data and compare it to standard PCA. As an extension to successful reconstruction, we demonstrate a generation of new (unseen) spectra by the RBM model trained on a large spectroscopic dataset. This data generation is of great use not only for the extending measured datasets but also as a proper training state's confirmation of the model.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Spectrochimica Acta Part B

  • ISSN

    0584-8547

  • e-ISSN

  • Svazek periodika

    167

  • Číslo periodika v rámci svazku

    105849

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    8

  • Strana od-do

    „NA“-„NA“

  • Kód UT WoS článku

    000535905500004

  • EID výsledku v databázi Scopus

    2-s2.0-85082767921