Restricted Boltzmann Machine Method for Dimensionality Reduction of Spectroscopic Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F19%3APU133565" target="_blank" >RIV/00216305:26620/19:PU133565 - isvavai.cz</a>
Výsledek na webu
<a href="http://libs.ceitec.cz/files/281/213.pdf" target="_blank" >http://libs.ceitec.cz/files/281/213.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Restricted Boltzmann Machine Method for Dimensionality Reduction of Spectroscopic Data
Popis výsledku v původním jazyce
Multivariate data obtained using, for instance, Laser-Induced Breakdown Spectroscopy (LIBS) are quite bulky and complex. Advanced processing of spectroscopic data demands a multidisciplinary approach covering not only modern machine learning tools but also a deep understanding of underlying physical mechanisms. Strong non-linearities of those mechanisms are inducing problems in their processing using standard linear algorithms. Artificial Neural Networks (ANN) seem suitable for this task, and based on their success, they are given considerable attention within the spectroscopic community. We propose a new methodology based on Restricted Boltzmann Machine (ANN method) for dimensionality reduction of spectroscopic data and compare it to well known linear techniques such as PCA. Moreover, we apply this technique to the processing and mapping of very high-dimensional LIBS data.
Název v anglickém jazyce
Restricted Boltzmann Machine Method for Dimensionality Reduction of Spectroscopic Data
Popis výsledku anglicky
Multivariate data obtained using, for instance, Laser-Induced Breakdown Spectroscopy (LIBS) are quite bulky and complex. Advanced processing of spectroscopic data demands a multidisciplinary approach covering not only modern machine learning tools but also a deep understanding of underlying physical mechanisms. Strong non-linearities of those mechanisms are inducing problems in their processing using standard linear algorithms. Artificial Neural Networks (ANN) seem suitable for this task, and based on their success, they are given considerable attention within the spectroscopic community. We propose a new methodology based on Restricted Boltzmann Machine (ANN method) for dimensionality reduction of spectroscopic data and compare it to well known linear techniques such as PCA. Moreover, we apply this technique to the processing and mapping of very high-dimensional LIBS data.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů