Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Inter-turn short circuit detection in PMS motor using artificial neural network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APR34498" target="_blank" >RIV/00216305:26620/21:PR34498 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ai4di.ceitec.cz/vysledky/ann_for_itsc_detection" target="_blank" >https://ai4di.ceitec.cz/vysledky/ann_for_itsc_detection</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Inter-turn short circuit detection in PMS motor using artificial neural network

  • Popis výsledku v původním jazyce

    The PMS motor inter-turn short-circuit detection system using a neural network demonstrates the possibilities of using artificial intelligence in the control processes of AC electric drives at the inverter control level, right in the embedded system. This application is very different from typical applications for neural networks, which today often target the field of image processing. A significant difference lies in the different requirements on the response speed with a much smaller volume of processed data. In the case of well-processed input signals, relatively simple neural network structures, for which a short response time is required, are sufficient for the diagnostics of electric drives. The prepared software demonstrates the use of the open-source platform TensorFlow for neural networks learning. Subsequent conversion of the neural network into source code for nVidia graphics cards (CUDA code). Finally, the source code is compiled on the target platform. The nVidia Jetson AGX Xavier platform was used to demonstrate inter-turn short circuit fault detection. The system uses the inverter control algorithm, which is implemented in the AURIX TC397 microcontroller. The control system periodically sends data via the Ethernet interface using the UDP protocol. The data is processed on an external platform. The used solution offers the possibility of implementing a neural network in various platforms. A useful alternative for implementing a neural network may be a TPU or FPGA. In principle, it is also possible to implement neural networks directly in the free cores of the control microcontroller. Prepared neural networks use advanced data preprocessing algorithms. Convolutional neural networks use detection based on actual motor currents in DQ coordinates. In this case, the detection takes place in average after one to two electrical revolutions. This network uses mixed input data. Some input data is passed directly to the perceptron layers that follow the convolut

  • Název v anglickém jazyce

    Inter-turn short circuit detection in PMS motor using artificial neural network

  • Popis výsledku anglicky

    The PMS motor inter-turn short-circuit detection system using a neural network demonstrates the possibilities of using artificial intelligence in the control processes of AC electric drives at the inverter control level, right in the embedded system. This application is very different from typical applications for neural networks, which today often target the field of image processing. A significant difference lies in the different requirements on the response speed with a much smaller volume of processed data. In the case of well-processed input signals, relatively simple neural network structures, for which a short response time is required, are sufficient for the diagnostics of electric drives. The prepared software demonstrates the use of the open-source platform TensorFlow for neural networks learning. Subsequent conversion of the neural network into source code for nVidia graphics cards (CUDA code). Finally, the source code is compiled on the target platform. The nVidia Jetson AGX Xavier platform was used to demonstrate inter-turn short circuit fault detection. The system uses the inverter control algorithm, which is implemented in the AURIX TC397 microcontroller. The control system periodically sends data via the Ethernet interface using the UDP protocol. The data is processed on an external platform. The used solution offers the possibility of implementing a neural network in various platforms. A useful alternative for implementing a neural network may be a TPU or FPGA. In principle, it is also possible to implement neural networks directly in the free cores of the control microcontroller. Prepared neural networks use advanced data preprocessing algorithms. Convolutional neural networks use detection based on actual motor currents in DQ coordinates. In this case, the detection takes place in average after one to two electrical revolutions. This network uses mixed input data. Some input data is passed directly to the perceptron layers that follow the convolut

Klasifikace

  • Druh

    R - Software

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/8A19001" target="_blank" >8A19001: Artificial Intelligence for Digitizing Industry</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Interní identifikační kód produktu

    ANN for ITSC detection

  • Technické parametry

    Software obsahuje implementaci neuronové sítě typu multi layer perceptron a typu konvoluční neuronová síť. Diagnostika probíhá z naměřených dat na zdravém motoru, případně na motoru s emulovanou chybou. Detekce zatím neprobíhá (nebyla testována) z přechodného děje.

  • Ekonomické parametry

    Software pro detekci poruchy poruchy mezizávitového zkratu se používá pro další výzkum a vývoj, komerční využití se zatím nepředpokládá.

  • IČO vlastníka výsledku

    00216305

  • Název vlastníka

    Vysoké učení technické v Brně