Detection of the Interturn Shorts of a Three-Phase Motor Using Artificial Intelligence Processing Vibration Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU147398" target="_blank" >RIV/00216305:26620/22:PU147398 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9982824" target="_blank" >https://ieeexplore.ieee.org/document/9982824</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ME54704.2022.9982824" target="_blank" >10.1109/ME54704.2022.9982824</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of the Interturn Shorts of a Three-Phase Motor Using Artificial Intelligence Processing Vibration Data
Popis výsledku v původním jazyce
The paper deals with description, design, learning and inference process of a convolutional 2D neural network for detection of shortened winding turns of a three-phase permanent magnet synchronous motor. Input datasets for aforementioned procedures have been created by sensing vibration data on the real motor using accelerometers with a possibility of artificially induce short circuit in the motor winding. Only simple pre-processing of a time signal has been done – the time waveform was reshaped into 2D greyscale images with a size of 64 x 64 points and led directly into the neural network. No pretrained network has been used – internal parameters have been learned from scratch. Learning process as well as inference of the network have been performed on a standard personal computer with nVidia GeForce RTX 2080 Ti graphics card and implemented usign Python in Keras/TensorFlow environment. Datasets for different working states of the motor, such as speed, torque, error type and its severity have been used. Training procedure of the network has been done within lower tens of minutes and final validation accuracy was 100 % in the most cases, while classification accuracy during inference process has reached the value of more than 99 %. Obtained results confirmed a fact, that faults’ detection of the mechatronic system based on sensing of mechanical quantities and their evaluation is very reliable even in the case of electrical-based faults.
Název v anglickém jazyce
Detection of the Interturn Shorts of a Three-Phase Motor Using Artificial Intelligence Processing Vibration Data
Popis výsledku anglicky
The paper deals with description, design, learning and inference process of a convolutional 2D neural network for detection of shortened winding turns of a three-phase permanent magnet synchronous motor. Input datasets for aforementioned procedures have been created by sensing vibration data on the real motor using accelerometers with a possibility of artificially induce short circuit in the motor winding. Only simple pre-processing of a time signal has been done – the time waveform was reshaped into 2D greyscale images with a size of 64 x 64 points and led directly into the neural network. No pretrained network has been used – internal parameters have been learned from scratch. Learning process as well as inference of the network have been performed on a standard personal computer with nVidia GeForce RTX 2080 Ti graphics card and implemented usign Python in Keras/TensorFlow environment. Datasets for different working states of the motor, such as speed, torque, error type and its severity have been used. Training procedure of the network has been done within lower tens of minutes and final validation accuracy was 100 % in the most cases, while classification accuracy during inference process has reached the value of more than 99 %. Obtained results confirmed a fact, that faults’ detection of the mechatronic system based on sensing of mechanical quantities and their evaluation is very reliable even in the case of electrical-based faults.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/8A19001" target="_blank" >8A19001: Artificial Intelligence for Digitizing Industry</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2022 20th International Conference on Mechatronics - Mechatronika (ME)
ISBN
978-1-6654-1040-3
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
234-238
Název nakladatele
IEEE
Místo vydání
neuveden
Místo konání akce
Pilsen
Datum konání akce
7. 12. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—