Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Detection of the Interturn Shorts of a Three-Phase Motor Using Artificial Intelligence Processing Vibration Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU147398" target="_blank" >RIV/00216305:26620/22:PU147398 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9982824" target="_blank" >https://ieeexplore.ieee.org/document/9982824</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ME54704.2022.9982824" target="_blank" >10.1109/ME54704.2022.9982824</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Detection of the Interturn Shorts of a Three-Phase Motor Using Artificial Intelligence Processing Vibration Data

  • Popis výsledku v původním jazyce

    The paper deals with description, design, learning and inference process of a convolutional 2D neural network for detection of shortened winding turns of a three-phase permanent magnet synchronous motor. Input datasets for aforementioned procedures have been created by sensing vibration data on the real motor using accelerometers with a possibility of artificially induce short circuit in the motor winding. Only simple pre-processing of a time signal has been done – the time waveform was reshaped into 2D greyscale images with a size of 64 x 64 points and led directly into the neural network. No pretrained network has been used – internal parameters have been learned from scratch. Learning process as well as inference of the network have been performed on a standard personal computer with nVidia GeForce RTX 2080 Ti graphics card and implemented usign Python in Keras/TensorFlow environment. Datasets for different working states of the motor, such as speed, torque, error type and its severity have been used. Training procedure of the network has been done within lower tens of minutes and final validation accuracy was 100 % in the most cases, while classification accuracy during inference process has reached the value of more than 99 %. Obtained results confirmed a fact, that faults’ detection of the mechatronic system based on sensing of mechanical quantities and their evaluation is very reliable even in the case of electrical-based faults.

  • Název v anglickém jazyce

    Detection of the Interturn Shorts of a Three-Phase Motor Using Artificial Intelligence Processing Vibration Data

  • Popis výsledku anglicky

    The paper deals with description, design, learning and inference process of a convolutional 2D neural network for detection of shortened winding turns of a three-phase permanent magnet synchronous motor. Input datasets for aforementioned procedures have been created by sensing vibration data on the real motor using accelerometers with a possibility of artificially induce short circuit in the motor winding. Only simple pre-processing of a time signal has been done – the time waveform was reshaped into 2D greyscale images with a size of 64 x 64 points and led directly into the neural network. No pretrained network has been used – internal parameters have been learned from scratch. Learning process as well as inference of the network have been performed on a standard personal computer with nVidia GeForce RTX 2080 Ti graphics card and implemented usign Python in Keras/TensorFlow environment. Datasets for different working states of the motor, such as speed, torque, error type and its severity have been used. Training procedure of the network has been done within lower tens of minutes and final validation accuracy was 100 % in the most cases, while classification accuracy during inference process has reached the value of more than 99 %. Obtained results confirmed a fact, that faults’ detection of the mechatronic system based on sensing of mechanical quantities and their evaluation is very reliable even in the case of electrical-based faults.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/8A19001" target="_blank" >8A19001: Artificial Intelligence for Digitizing Industry</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2022 20th International Conference on Mechatronics - Mechatronika (ME)

  • ISBN

    978-1-6654-1040-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    234-238

  • Název nakladatele

    IEEE

  • Místo vydání

    neuveden

  • Místo konání akce

    Pilsen

  • Datum konání akce

    7. 12. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku