Implementation of ANN for PMSM interturn short-circuit detection in the embedded system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU149633" target="_blank" >RIV/00216305:26620/23:PU149633 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10312642" target="_blank" >https://ieeexplore.ieee.org/document/10312642</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IECON51785.2023.10312642" target="_blank" >10.1109/IECON51785.2023.10312642</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Implementation of ANN for PMSM interturn short-circuit detection in the embedded system
Popis výsledku v původním jazyce
The problem of condition monitoring and fault detection in powertrain systems becomes more critical with the increasing use of fail-operational systems. These systems are essential in the automotive industry, robotics, and other industrial applications. One of the critical features of such a system is recognizing the fault and suppressing its influence. The paper describes a feed-forward artificial neural network-based diagnostic of interturn short-circuit faults in a dual three-phase permanent magnet synchronous motor. The paper focuses on using MLPN, and CNN for interturn short-circuit detection and, more importantly, their real implementation into the automotive AURIX TC397 microcontroller. The paper presents the achieved neural network inference times as well as data preprocessing computation time. The behavior of the ANNs is tested on an experimental configurable multiphase PMSM drive with the possibility to emulate interturn short-circuit fault using prepared winding taps. The paper includes the essential aspects that should be respected during ANN design and implementation into the microcontroller.
Název v anglickém jazyce
Implementation of ANN for PMSM interturn short-circuit detection in the embedded system
Popis výsledku anglicky
The problem of condition monitoring and fault detection in powertrain systems becomes more critical with the increasing use of fail-operational systems. These systems are essential in the automotive industry, robotics, and other industrial applications. One of the critical features of such a system is recognizing the fault and suppressing its influence. The paper describes a feed-forward artificial neural network-based diagnostic of interturn short-circuit faults in a dual three-phase permanent magnet synchronous motor. The paper focuses on using MLPN, and CNN for interturn short-circuit detection and, more importantly, their real implementation into the automotive AURIX TC397 microcontroller. The paper presents the achieved neural network inference times as well as data preprocessing computation time. The behavior of the ANNs is tested on an experimental configurable multiphase PMSM drive with the possibility to emulate interturn short-circuit fault using prepared winding taps. The paper includes the essential aspects that should be respected during ANN design and implementation into the microcontroller.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society
ISBN
979-8-3503-3182-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE
Místo vydání
Singapur
Místo konání akce
Singapore
Datum konání akce
16. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—