PMSM fault detection using unsupervised learning methods based on conditional convolution autoencoder
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU154792" target="_blank" >RIV/00216305:26620/24:PU154792 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10905074" target="_blank" >https://ieeexplore.ieee.org/document/10905074</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IECON55916.2024.10905074" target="_blank" >10.1109/IECON55916.2024.10905074</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PMSM fault detection using unsupervised learning methods based on conditional convolution autoencoder
Popis výsledku v původním jazyce
The challenges of fault detection and condition monitoring in powertrain systems have become increasingly prominent, particularly with the widespread adoption of failoperational systems. These systems are pivotal in diverse sectors, including the robotics, automotive industry, and various industrial applications. A critical attribute of such systems lies in their capability to identify non-standard behaviour of the system. This study describes a inovative conditional convolutional autoencoder-based fault detection algorithm for the permanent magnet synchronous motor. The study compares a train process of conditional convolutional autoencoder with a classical convolutional autoencoder. The presented autoencoder structure was designed to be implementable into the target microcontroller AURIX TC397 while providing sufficient recognition capabilities of the interturn short-circuit. Autoencoders are trained on data obtained during healthy motor operation and subsequently used to detect interturn short-circuit faults on the experimental dual three-phase permanent magnet synchronous motor with the possibility of emulating an interturn short-circuit fault. The paper provides insights into the achieved autoencoder inference times and the sensitivity in detecting the fault.
Název v anglickém jazyce
PMSM fault detection using unsupervised learning methods based on conditional convolution autoencoder
Popis výsledku anglicky
The challenges of fault detection and condition monitoring in powertrain systems have become increasingly prominent, particularly with the widespread adoption of failoperational systems. These systems are pivotal in diverse sectors, including the robotics, automotive industry, and various industrial applications. A critical attribute of such systems lies in their capability to identify non-standard behaviour of the system. This study describes a inovative conditional convolutional autoencoder-based fault detection algorithm for the permanent magnet synchronous motor. The study compares a train process of conditional convolutional autoencoder with a classical convolutional autoencoder. The presented autoencoder structure was designed to be implementable into the target microcontroller AURIX TC397 while providing sufficient recognition capabilities of the interturn short-circuit. Autoencoders are trained on data obtained during healthy motor operation and subsequently used to detect interturn short-circuit faults on the experimental dual three-phase permanent magnet synchronous motor with the possibility of emulating an interturn short-circuit fault. The paper provides insights into the achieved autoencoder inference times and the sensitivity in detecting the fault.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IECON 2024- 50th Annual Conference of the IEEE Industrial Electronics Society
ISBN
978-1-6654-6454-3
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE
Místo vydání
Chicago, IL, USA
Místo konání akce
Chicago
Datum konání akce
3. 11. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—