Addressing the sparsity of laser-induced breakdown spectroscopy data with randomized sparse principal component analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APU140691" target="_blank" >RIV/00216305:26620/21:PU140691 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlepdf/2021/JA/D1JA00067E" target="_blank" >https://pubs.rsc.org/en/content/articlepdf/2021/JA/D1JA00067E</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d1ja00067e" target="_blank" >10.1039/d1ja00067e</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Addressing the sparsity of laser-induced breakdown spectroscopy data with randomized sparse principal component analysis
Popis výsledku v původním jazyce
Emission spectra yielded by laser-induced breakdown spectroscopy (LIBS) exhibit high dimensionality, redundancy, and sparsity. The high dimensionality is often addressed by principal component analysis (PCA) which creates a low dimensional embedding of the spectra by projecting them into the score space. However, PCA does not effectively deal with the sparsity of the analysed data, including LIBS spectra. Consequently, sparse PCA (SPCA) was proposed for the analysis of high-dimensional sparse data. Nevertheless, SPCA remains underutilized for LIBS applications. Thus, in this work, we show that SPCA combined with genetic algorithms offers marginal improvements in clustering and quantification using multivariate calibration. More importantly, we show that SPCA significantly improves the interpretability of loading spectra. In addition, we show that the loading spectra yielded by SPCA differ from those yielded by sparse partial least squares regression. Finally, by using the randomized SPCA (RSPCA) algorithm for carrying out SPCA, we indirectly demonstrate that the analysis of LIBS data can greatly benefit from the tools developed by randomized linear algebra: RSPCA offers a 20-fold increase in computation speed compared to PCA based on singular value decomposition.
Název v anglickém jazyce
Addressing the sparsity of laser-induced breakdown spectroscopy data with randomized sparse principal component analysis
Popis výsledku anglicky
Emission spectra yielded by laser-induced breakdown spectroscopy (LIBS) exhibit high dimensionality, redundancy, and sparsity. The high dimensionality is often addressed by principal component analysis (PCA) which creates a low dimensional embedding of the spectra by projecting them into the score space. However, PCA does not effectively deal with the sparsity of the analysed data, including LIBS spectra. Consequently, sparse PCA (SPCA) was proposed for the analysis of high-dimensional sparse data. Nevertheless, SPCA remains underutilized for LIBS applications. Thus, in this work, we show that SPCA combined with genetic algorithms offers marginal improvements in clustering and quantification using multivariate calibration. More importantly, we show that SPCA significantly improves the interpretability of loading spectra. In addition, we show that the loading spectra yielded by SPCA differ from those yielded by sparse partial least squares regression. Finally, by using the randomized SPCA (RSPCA) algorithm for carrying out SPCA, we indirectly demonstrate that the analysis of LIBS data can greatly benefit from the tools developed by randomized linear algebra: RSPCA offers a 20-fold increase in computation speed compared to PCA based on singular value decomposition.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018110" target="_blank" >LM2018110: Výzkumná infrastruktura CzechNanoLab</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Analytical Atomic Spectrometry
ISSN
0267-9477
e-ISSN
1364-5544
Svazek periodika
36
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
1410-1421
Kód UT WoS článku
000649277600001
EID výsledku v databázi Scopus
2-s2.0-85109586197