Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Addressing the sparsity of laser-induced breakdown spectroscopy data with randomized sparse principal component analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APU140691" target="_blank" >RIV/00216305:26620/21:PU140691 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.rsc.org/en/content/articlepdf/2021/JA/D1JA00067E" target="_blank" >https://pubs.rsc.org/en/content/articlepdf/2021/JA/D1JA00067E</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d1ja00067e" target="_blank" >10.1039/d1ja00067e</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Addressing the sparsity of laser-induced breakdown spectroscopy data with randomized sparse principal component analysis

  • Popis výsledku v původním jazyce

    Emission spectra yielded by laser-induced breakdown spectroscopy (LIBS) exhibit high dimensionality, redundancy, and sparsity. The high dimensionality is often addressed by principal component analysis (PCA) which creates a low dimensional embedding of the spectra by projecting them into the score space. However, PCA does not effectively deal with the sparsity of the analysed data, including LIBS spectra. Consequently, sparse PCA (SPCA) was proposed for the analysis of high-dimensional sparse data. Nevertheless, SPCA remains underutilized for LIBS applications. Thus, in this work, we show that SPCA combined with genetic algorithms offers marginal improvements in clustering and quantification using multivariate calibration. More importantly, we show that SPCA significantly improves the interpretability of loading spectra. In addition, we show that the loading spectra yielded by SPCA differ from those yielded by sparse partial least squares regression. Finally, by using the randomized SPCA (RSPCA) algorithm for carrying out SPCA, we indirectly demonstrate that the analysis of LIBS data can greatly benefit from the tools developed by randomized linear algebra: RSPCA offers a 20-fold increase in computation speed compared to PCA based on singular value decomposition.

  • Název v anglickém jazyce

    Addressing the sparsity of laser-induced breakdown spectroscopy data with randomized sparse principal component analysis

  • Popis výsledku anglicky

    Emission spectra yielded by laser-induced breakdown spectroscopy (LIBS) exhibit high dimensionality, redundancy, and sparsity. The high dimensionality is often addressed by principal component analysis (PCA) which creates a low dimensional embedding of the spectra by projecting them into the score space. However, PCA does not effectively deal with the sparsity of the analysed data, including LIBS spectra. Consequently, sparse PCA (SPCA) was proposed for the analysis of high-dimensional sparse data. Nevertheless, SPCA remains underutilized for LIBS applications. Thus, in this work, we show that SPCA combined with genetic algorithms offers marginal improvements in clustering and quantification using multivariate calibration. More importantly, we show that SPCA significantly improves the interpretability of loading spectra. In addition, we show that the loading spectra yielded by SPCA differ from those yielded by sparse partial least squares regression. Finally, by using the randomized SPCA (RSPCA) algorithm for carrying out SPCA, we indirectly demonstrate that the analysis of LIBS data can greatly benefit from the tools developed by randomized linear algebra: RSPCA offers a 20-fold increase in computation speed compared to PCA based on singular value decomposition.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10406 - Analytical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2018110" target="_blank" >LM2018110: Výzkumná infrastruktura CzechNanoLab</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Analytical Atomic Spectrometry

  • ISSN

    0267-9477

  • e-ISSN

    1364-5544

  • Svazek periodika

    36

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    1410-1421

  • Kód UT WoS článku

    000649277600001

  • EID výsledku v databázi Scopus

    2-s2.0-85109586197