Imaging margins of skin tumors using laser-induced breakdown spectroscopy and machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APU141090" target="_blank" >RIV/00216305:26620/21:PU141090 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11150/21:10427195 RIV/00216208:11120/21:43921429 RIV/00179906:_____/21:10427195
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2021/JA/D0JA00469C#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2021/JA/D0JA00469C#!divAbstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d0ja00469c" target="_blank" >10.1039/d0ja00469c</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Imaging margins of skin tumors using laser-induced breakdown spectroscopy and machine learning
Popis výsledku v původním jazyce
Nowadays, laser-based techniques play a significant role in medicine, mainly in the ophthalmology, dermatology, and surgical fields. So far, they have presented mostly therapeutic applications, although they have considerable potential for diagnostic approaches. In our study, we focused on the application of laser-based spectroscopy in skin cancer assessment. Recently, lengthy and demanding pathological investigation has been improved with modern techniques of machine learning and analytical chemistry where elemental analysis provides further insight into the investigated phenomenon. This article deals with the complementarity of Laser-Induced Breakdown Spectroscopy (LIBS) with standard histopathology. This includes discussion on sample preparation and feasibility to perform 3D imaging of a tumor. Typical skin tumors were selected for LIBS analysis, namely cutaneous malignant melanoma, squamous cell carcinoma and the most common skin tumor basal cell carcinoma, and a benign tumor was represented by hemangioma. The imaging of biotic elements (Mg, Ca, Na, and K) provides the elemental distribution within the tissue. The elemental images were correlated with the tumor progression and its margins, as well as with the difference between healthy and tumorous tissues and the results were compared with other studies covering this topic of interest. Finally, self-organizing maps were trained and used with a k-means algorithm to cluster various matrices within the tumorous tissue and to demonstrate the potential of machine learning for processing of LIBS data.
Název v anglickém jazyce
Imaging margins of skin tumors using laser-induced breakdown spectroscopy and machine learning
Popis výsledku anglicky
Nowadays, laser-based techniques play a significant role in medicine, mainly in the ophthalmology, dermatology, and surgical fields. So far, they have presented mostly therapeutic applications, although they have considerable potential for diagnostic approaches. In our study, we focused on the application of laser-based spectroscopy in skin cancer assessment. Recently, lengthy and demanding pathological investigation has been improved with modern techniques of machine learning and analytical chemistry where elemental analysis provides further insight into the investigated phenomenon. This article deals with the complementarity of Laser-Induced Breakdown Spectroscopy (LIBS) with standard histopathology. This includes discussion on sample preparation and feasibility to perform 3D imaging of a tumor. Typical skin tumors were selected for LIBS analysis, namely cutaneous malignant melanoma, squamous cell carcinoma and the most common skin tumor basal cell carcinoma, and a benign tumor was represented by hemangioma. The imaging of biotic elements (Mg, Ca, Na, and K) provides the elemental distribution within the tissue. The elemental images were correlated with the tumor progression and its margins, as well as with the difference between healthy and tumorous tissues and the results were compared with other studies covering this topic of interest. Finally, self-organizing maps were trained and used with a k-means algorithm to cluster various matrices within the tumorous tissue and to demonstrate the potential of machine learning for processing of LIBS data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Analytical Atomic Spectrometry
ISSN
0267-9477
e-ISSN
1364-5544
Svazek periodika
36
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
909-916
Kód UT WoS článku
000639141400001
EID výsledku v databázi Scopus
2-s2.0-85105783529