Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Opening black-box models used in LIBS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APU142521" target="_blank" >RIV/00216305:26620/21:PU142521 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Opening black-box models used in LIBS

  • Popis výsledku v původním jazyce

    The use of multivariate data-based models has become synonymous with modern LIBS analysis, be it qualitative or quantitative [1]. Two of such techniques frequently found in the LIBS literature are support vector machines (SVM) and artificial neural networks, namely convolutional neural networks (CNNs). While both techniques have undoubtedly contributed to achieving state-of-the-art classification performance in several LIBS applications, there is a common drawback associated with both methods, namely their black-box nature. In this work, we carried out the post-hoc interpretation of SVM and CNN models trained for a classification task. SVM classifiers were interpreted via the determination of feature importances [2]. The CNNs were interpreted by finding the optimal input spectra that maximize the activation of individual convolutional neurons and by carrying out class activation maximization [3]. The latter technique finds the input spectra that best represent the classes learnt by the network. We fou

  • Název v anglickém jazyce

    Opening black-box models used in LIBS

  • Popis výsledku anglicky

    The use of multivariate data-based models has become synonymous with modern LIBS analysis, be it qualitative or quantitative [1]. Two of such techniques frequently found in the LIBS literature are support vector machines (SVM) and artificial neural networks, namely convolutional neural networks (CNNs). While both techniques have undoubtedly contributed to achieving state-of-the-art classification performance in several LIBS applications, there is a common drawback associated with both methods, namely their black-box nature. In this work, we carried out the post-hoc interpretation of SVM and CNN models trained for a classification task. SVM classifiers were interpreted via the determination of feature importances [2]. The CNNs were interpreted by finding the optimal input spectra that maximize the activation of individual convolutional neurons and by carrying out class activation maximization [3]. The latter technique finds the input spectra that best represent the classes learnt by the network. We fou

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10406 - Analytical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ20-19526Y" target="_blank" >GJ20-19526Y: Procesy laserové ablace měkkých tkání a následného vývoje laserem buzeného plazmatu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů