Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Human Detection in Depth Map Created from Point Cloud

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU141816" target="_blank" >RIV/00216305:26620/22:PU141816 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-030-98260-7_16" target="_blank" >http://dx.doi.org/10.1007/978-3-030-98260-7_16</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-98260-7_16" target="_blank" >10.1007/978-3-030-98260-7_16</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Human Detection in Depth Map Created from Point Cloud

  • Popis výsledku v původním jazyce

    This paper deals with human detection in the LiDAR data using the YOLO object detection neural network architecture. RGB-based object detection is the most studied topic in the field of neural networks and autonomous agents. However, these models are very sensitive to even minor changes in the weather or light conditions if the training data do not cover these situations. This paper proposes to use the LiDAR data as a redundant, and more condition invariant source of object detections around the autonomous agent. We used the publically available real-traffic dataset that simultaneously captures data from RGB camera and 3D LiDAR sensors during the clear-sky day and rainy night time and we aggregate the LiDAR data for a short period to increase the density of the point cloud. Later we projected these point cloud by several projection models, like pinhole camera model, cylindrical projection, and bird-view projection, into the 2D image frame, and we annotated all the images. As the main experiment, we trained the several YOLOv5 neural networks on the data captured during the day and validate the models on the mixed day and night data to study the robustness and information gain during the condition changes of the input data. The results show that the LiDAR-based models provide significantly better performance during the changed weather conditions than the RGB-based models.

  • Název v anglickém jazyce

    Human Detection in Depth Map Created from Point Cloud

  • Popis výsledku anglicky

    This paper deals with human detection in the LiDAR data using the YOLO object detection neural network architecture. RGB-based object detection is the most studied topic in the field of neural networks and autonomous agents. However, these models are very sensitive to even minor changes in the weather or light conditions if the training data do not cover these situations. This paper proposes to use the LiDAR data as a redundant, and more condition invariant source of object detections around the autonomous agent. We used the publically available real-traffic dataset that simultaneously captures data from RGB camera and 3D LiDAR sensors during the clear-sky day and rainy night time and we aggregate the LiDAR data for a short period to increase the density of the point cloud. Later we projected these point cloud by several projection models, like pinhole camera model, cylindrical projection, and bird-view projection, into the 2D image frame, and we annotated all the images. As the main experiment, we trained the several YOLOv5 neural networks on the data captured during the day and validate the models on the mixed day and night data to study the robustness and information gain during the condition changes of the input data. The results show that the LiDAR-based models provide significantly better performance during the changed weather conditions than the RGB-based models.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/8A20002" target="_blank" >8A20002: Trustable architectures with acceptable residual risk for the electric, connected and automated cars</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    International Conference on Modelling and Simulation for Autonomous Systems

  • ISBN

    9783030982607

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Název nakladatele

    Neuveden

  • Místo vydání

    neuveden

  • Místo konání akce

    virtual

  • Datum konání akce

    13. 10. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000787774900016