Transfer Learning for Deep Convolutional Neural Network from RGB to IR Domain
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU136318" target="_blank" >RIV/00216305:26220/20:PU136318 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transfer Learning for Deep Convolutional Neural Network from RGB to IR Domain
Popis výsledku v původním jazyce
In this paper, we are presenting a proof of concept of our system for training of the YOLOv3 neural network for object detection of vehicles in thermal camera images. Our approach is unique in the way we are using a dataset containing a large number of synchronized range measurements as well as RGB and thermal images. We are using the existing YOLO toolkit to detect objects on the RGB images, we estimate detection distance by the LiDAR and later we reproject these detections into the IR image. In this way, we have created a large dataset of annotated thermal images that helped us to significantly improve the performance of the neural network at the IR domain.
Název v anglickém jazyce
Transfer Learning for Deep Convolutional Neural Network from RGB to IR Domain
Popis výsledku anglicky
In this paper, we are presenting a proof of concept of our system for training of the YOLOv3 neural network for object detection of vehicles in thermal camera images. Our approach is unique in the way we are using a dataset containing a large number of synchronized range measurements as well as RGB and thermal images. We are using the existing YOLO toolkit to detect objects on the RGB images, we estimate detection distance by the LiDAR and later we reproject these detections into the IR image. In this way, we have created a large dataset of annotated thermal images that helped us to significantly improve the performance of the neural network at the IR domain.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů