Interpreting support vector machines applied in laser-induced breakdown spectroscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU142522" target="_blank" >RIV/00216305:26620/22:PU142522 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/22:00126745
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0003267021011788#appsec1" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0003267021011788#appsec1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aca.2021.339352" target="_blank" >10.1016/j.aca.2021.339352</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interpreting support vector machines applied in laser-induced breakdown spectroscopy
Popis výsledku v původním jazyce
Laser-induced breakdown spectroscopy is often combined with a multivariate black box model—such as support vector machines (SVMs)—to obtain desirable quantitative or qualitative results. This approach carries obvious risks when practiced in high-stakes applications. Moreover, the lack of understanding of a black-box model limits the user's ability to fine-tune the model. Thus, here we present four approaches to interpret SVMs through investigating which features the models consider important in the classification task of 19 algal and cyanobacterial species. The four feature importance metrics are compared with popular approaches to feature selection for optimal SVM performance. We report that the distinct feature importance metrics yield complementary and often comparable information. In addition, we identify our SVM model's bias towards features with a large variance, even though these features exhibit a significant overlap between classes. We also show that the linear and radial basis kernel SVMs weight the same features to the same degree.
Název v anglickém jazyce
Interpreting support vector machines applied in laser-induced breakdown spectroscopy
Popis výsledku anglicky
Laser-induced breakdown spectroscopy is often combined with a multivariate black box model—such as support vector machines (SVMs)—to obtain desirable quantitative or qualitative results. This approach carries obvious risks when practiced in high-stakes applications. Moreover, the lack of understanding of a black-box model limits the user's ability to fine-tune the model. Thus, here we present four approaches to interpret SVMs through investigating which features the models consider important in the classification task of 19 algal and cyanobacterial species. The four feature importance metrics are compared with popular approaches to feature selection for optimal SVM performance. We report that the distinct feature importance metrics yield complementary and often comparable information. In addition, we identify our SVM model's bias towards features with a large variance, even though these features exhibit a significant overlap between classes. We also show that the linear and radial basis kernel SVMs weight the same features to the same degree.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Analytica Chimica Acta
ISSN
0003-2670
e-ISSN
1873-4324
Svazek periodika
1192
Číslo periodika v rámci svazku
339352
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000829967000016
EID výsledku v databázi Scopus
2-s2.0-85121215317