Memristors with Initial Low-Resistive State for Efficient Neuromorphic Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU144257" target="_blank" >RIV/00216305:26620/22:PU144257 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/aisy.202200001" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/aisy.202200001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/aisy.202200001" target="_blank" >10.1002/aisy.202200001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Memristors with Initial Low-Resistive State for Efficient Neuromorphic Systems
Popis výsledku v původním jazyce
Memristive electronic synapses are attractive to construct artificial neural networks (ANNs) for neuromorphic computing systems, owing to their excellent electronic performance, high integration density, and low cost. However, the necessity of initializing their conductance through a forming process requires additional peripheral hardware and complex programming algorithms. Herein, the first fabrication of memristors that are initially in low-resistive state (LRS) is reported, which exhibit homogenous initial resistance and switching voltages. When used as electronic synapses in a neuromorphic system to classify images from the CIFAR-10 dataset (Canadian Institute For Advanced Research), the memristors offer x1.83 better throughput per area and consume x0.85 less energy than standard memristors (i.e., with the necessity of forming), which stems from approximate to 63% better density and approximate to 17% faster operation. It is demonstrated in the results that tuning the local properties of materials embedded in memristive electronic synapses is an attractive strategy that can lead to an improved neuromorphic performance at the system level.
Název v anglickém jazyce
Memristors with Initial Low-Resistive State for Efficient Neuromorphic Systems
Popis výsledku anglicky
Memristive electronic synapses are attractive to construct artificial neural networks (ANNs) for neuromorphic computing systems, owing to their excellent electronic performance, high integration density, and low cost. However, the necessity of initializing their conductance through a forming process requires additional peripheral hardware and complex programming algorithms. Herein, the first fabrication of memristors that are initially in low-resistive state (LRS) is reported, which exhibit homogenous initial resistance and switching voltages. When used as electronic synapses in a neuromorphic system to classify images from the CIFAR-10 dataset (Canadian Institute For Advanced Research), the memristors offer x1.83 better throughput per area and consume x0.85 less energy than standard memristors (i.e., with the necessity of forming), which stems from approximate to 63% better density and approximate to 17% faster operation. It is demonstrated in the results that tuning the local properties of materials embedded in memristive electronic synapses is an attractive strategy that can lead to an improved neuromorphic performance at the system level.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018110" target="_blank" >LM2018110: Výzkumná infrastruktura CzechNanoLab</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Intelligent Systems
ISSN
2640-4567
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
2200001-220001
Kód UT WoS článku
000771007900001
EID výsledku v databázi Scopus
—