Electroforming in Metal-Oxide Memristive Synapses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU135864" target="_blank" >RIV/00216305:26620/20:PU135864 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsami.9b19362" target="_blank" >https://pubs.acs.org/doi/10.1021/acsami.9b19362</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.9b19362" target="_blank" >10.1021/acsami.9b19362</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electroforming in Metal-Oxide Memristive Synapses
Popis výsledku v původním jazyce
Memristors have shown an extraordinary potential to emulate the plastic and dynamic electrical behaviors of biological synapses and have been already used to construct neuromorphic systems with in-memory computing and unsupervised learning capabilities; moreover, the small size and simple fabrication process of memristors make them ideal candidates for ultradense configurations. So far, the properties of memristive electronic synapses (i.e., potentiation/depression, relaxation, linearity) have been extensively analyzed by several groups. However, the dynamics of electroforming in memristive devices, which defines the position, size, shape, and chemical composition of the conductive nanofilaments across the device, has not been analyzed in depth. By applying ramped voltage stress (RVS), constant voltage stress (CVS), and pulsed voltage stress (PVS), we found that electroforming is highly affected by the biasing methods applied. We also found that the technique used to deposit the oxide, the chemical composition of the adjacent metal electrodes, and the polarity of the electrical stimuli applied have important effects on the dynamics of the electroforming process and in subsequent post-electroforming bipolar resistive switching. This work should be of interest to designers of memristive neuromorphic systems and could open the door for the implementation of new bioinspired functionalities into memristive neuromorphic systems.
Název v anglickém jazyce
Electroforming in Metal-Oxide Memristive Synapses
Popis výsledku anglicky
Memristors have shown an extraordinary potential to emulate the plastic and dynamic electrical behaviors of biological synapses and have been already used to construct neuromorphic systems with in-memory computing and unsupervised learning capabilities; moreover, the small size and simple fabrication process of memristors make them ideal candidates for ultradense configurations. So far, the properties of memristive electronic synapses (i.e., potentiation/depression, relaxation, linearity) have been extensively analyzed by several groups. However, the dynamics of electroforming in memristive devices, which defines the position, size, shape, and chemical composition of the conductive nanofilaments across the device, has not been analyzed in depth. By applying ramped voltage stress (RVS), constant voltage stress (CVS), and pulsed voltage stress (PVS), we found that electroforming is highly affected by the biasing methods applied. We also found that the technique used to deposit the oxide, the chemical composition of the adjacent metal electrodes, and the polarity of the electrical stimuli applied have important effects on the dynamics of the electroforming process and in subsequent post-electroforming bipolar resistive switching. This work should be of interest to designers of memristive neuromorphic systems and could open the door for the implementation of new bioinspired functionalities into memristive neuromorphic systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015041" target="_blank" >LM2015041: CEITEC Nano</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS applied materials & interfaces
ISSN
1944-8244
e-ISSN
1944-8252
Svazek periodika
12
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
11806-11814
Kód UT WoS článku
000526609100050
EID výsledku v databázi Scopus
2-s2.0-85080945068