Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Flexible Generation of Prior Images for Metal Artifact Reduction in Industrial Computed Tomography

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU146639" target="_blank" >RIV/00216305:26620/22:PU146639 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Flexible Generation of Prior Images for Metal Artifact Reduction in Industrial Computed Tomography

  • Popis výsledku v původním jazyce

    In computed tomography, artifacts caused by metal objects pose a major challenge, as they severely degrade the final image. Reduction of these artifacts is a topic of ongoing research, and many possible approaches have been developed so far. Among these, projection completion methods are effective and reasonably simple to implement compared to others. The most effective of these methods require a prior image, a synthetic, artifact-free representation of the data. This prior is used to recover data obscured by the metals and thus reduce the presence of potential secondary artifacts, but it may not be trivial to obtain especially in industrial computed tomography, where sample variability tends to be high. Traditional methods of prior generation are often based on multi-segmentation of a preliminary tomographic slice, which requires substantial a-priori knowledge about the scanned sample, its morphology, and the materials it is made of. This is a major limit for applications where such information is not readily available. Initial results for a more flexible method of prior image generation based on sinogram decomposition are presented here. The goal of this method is to decrease the need to fine-tune parameters for different samples and make it possible to use existing advanced metal artifact reduction methods in new fields.

  • Název v anglickém jazyce

    Flexible Generation of Prior Images for Metal Artifact Reduction in Industrial Computed Tomography

  • Popis výsledku anglicky

    In computed tomography, artifacts caused by metal objects pose a major challenge, as they severely degrade the final image. Reduction of these artifacts is a topic of ongoing research, and many possible approaches have been developed so far. Among these, projection completion methods are effective and reasonably simple to implement compared to others. The most effective of these methods require a prior image, a synthetic, artifact-free representation of the data. This prior is used to recover data obscured by the metals and thus reduce the presence of potential secondary artifacts, but it may not be trivial to obtain especially in industrial computed tomography, where sample variability tends to be high. Traditional methods of prior generation are often based on multi-segmentation of a preliminary tomographic slice, which requires substantial a-priori knowledge about the scanned sample, its morphology, and the materials it is made of. This is a major limit for applications where such information is not readily available. Initial results for a more flexible method of prior image generation based on sinogram decomposition are presented here. The goal of this method is to decrease the need to fine-tune parameters for different samples and make it possible to use existing advanced metal artifact reduction methods in new fields.

Klasifikace

  • Druh

    A - Audiovizuální tvorba

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • ISBN

  • Místo vydání

    neuveden

  • Název nakladatele resp. objednatele

    neuveden

  • Verze

    neuveden

  • Identifikační číslo nosiče