Recursive identification of time-varying Hammerstein systems with matrix forgetting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU147547" target="_blank" >RIV/00216305:26620/23:PU147547 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9815531" target="_blank" >https://ieeexplore.ieee.org/document/9815531</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TAC.2022.3188478" target="_blank" >10.1109/TAC.2022.3188478</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recursive identification of time-varying Hammerstein systems with matrix forgetting
Popis výsledku v původním jazyce
The real-time estimation of the time-varying Hammerstein system by using a noniterative learning schema is considered and extended to incorporate a matrix forgetting factor. The estimation is cast in a variational-Bayes framework to best emulate the original posterior distribution of the parameters within the set of distributions with feasible moments. The recursive concept we propose approximates the exact posterior comprising undistorted information about the estimated parameters. In many practical settings, the incomplete model of parameter variations is compensated by forgetting of obsolete information. As a rule, the forgetting operation is initiated by the inclusion of an appropriate prediction alternative into the time update. It is shown that the careful formulation of the prediction alternative, which relies on Bayesian conditioning, results in partial forgetting. This article inspects two options with respect to the order of the conditioning in the posterior, which proves vital in the successful localization of the source of inconsistency in the data-generating process. The geometric mean of the discussed alternatives then modifies recursive learning through the matrix forgetting factor. We adopt the decision-making approach to revisit the posterior uncertainty by dynamically allocating the probability to each of the prediction alternatives to be combined.
Název v anglickém jazyce
Recursive identification of time-varying Hammerstein systems with matrix forgetting
Popis výsledku anglicky
The real-time estimation of the time-varying Hammerstein system by using a noniterative learning schema is considered and extended to incorporate a matrix forgetting factor. The estimation is cast in a variational-Bayes framework to best emulate the original posterior distribution of the parameters within the set of distributions with feasible moments. The recursive concept we propose approximates the exact posterior comprising undistorted information about the estimated parameters. In many practical settings, the incomplete model of parameter variations is compensated by forgetting of obsolete information. As a rule, the forgetting operation is initiated by the inclusion of an appropriate prediction alternative into the time update. It is shown that the careful formulation of the prediction alternative, which relies on Bayesian conditioning, results in partial forgetting. This article inspects two options with respect to the order of the conditioning in the posterior, which proves vital in the successful localization of the source of inconsistency in the data-generating process. The geometric mean of the discussed alternatives then modifies recursive learning through the matrix forgetting factor. We adopt the decision-making approach to revisit the posterior uncertainty by dynamically allocating the probability to each of the prediction alternatives to be combined.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
ISSN
0018-9286
e-ISSN
1558-2523
Svazek periodika
68
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
3078-3085
Kód UT WoS článku
000979661300032
EID výsledku v databázi Scopus
2-s2.0-85134255954