Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nanoarchitectonics of Triboelectric Nanogenerator for Conversion of Abundant Mechanical Energy to Green Hydrogen

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU148482" target="_blank" >RIV/00216305:26620/23:PU148482 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27240/23:10252980

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/aenm.202203476" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/aenm.202203476</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/aenm.202203476" target="_blank" >10.1002/aenm.202203476</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nanoarchitectonics of Triboelectric Nanogenerator for Conversion of Abundant Mechanical Energy to Green Hydrogen

  • Popis výsledku v původním jazyce

    In the present world, the high energy demand rapidly depletes existing fossil fuel reserves, urging the necessity to harvest energy from clean and renewable resources. In this study, the use of a triboelectric nanogenerator (TENG) is shown beyond the conventional practice of use in self-powered electronics, to the production of green hydrogen from renewable mechanical energy. For the first time the use of a magnetic covalent organic framework composite as positive triboelectric material for a contact-separation mode TENG (CS-TENG) in which MXene incorporated polydimethylsiloxane (PDMS) film serves as negative triboelectric material, is demonstrated. A facile way of incorporating micropatterns on the surface of PDMS/MXene film is shown utilizing the advantages of 3D printing technology. The CS-TENG harvests energy from simple mechanical actions such as human handclapping and toe-tapping. The energy from such low-scale mechanical actions is applied for water electrolysis. Scanning electrochemical microscopy is employed to confirm the evolution of hydrogen and oxygen by the harvested electrical energy from mechanical actions. This research is expected to pave the way for producing green hydrogen anywhere, by utilizing the mechanical energy from nature such as raindrops, wind, and the movement of vehicles.

  • Název v anglickém jazyce

    Nanoarchitectonics of Triboelectric Nanogenerator for Conversion of Abundant Mechanical Energy to Green Hydrogen

  • Popis výsledku anglicky

    In the present world, the high energy demand rapidly depletes existing fossil fuel reserves, urging the necessity to harvest energy from clean and renewable resources. In this study, the use of a triboelectric nanogenerator (TENG) is shown beyond the conventional practice of use in self-powered electronics, to the production of green hydrogen from renewable mechanical energy. For the first time the use of a magnetic covalent organic framework composite as positive triboelectric material for a contact-separation mode TENG (CS-TENG) in which MXene incorporated polydimethylsiloxane (PDMS) film serves as negative triboelectric material, is demonstrated. A facile way of incorporating micropatterns on the surface of PDMS/MXene film is shown utilizing the advantages of 3D printing technology. The CS-TENG harvests energy from simple mechanical actions such as human handclapping and toe-tapping. The energy from such low-scale mechanical actions is applied for water electrolysis. Scanning electrochemical microscopy is employed to confirm the evolution of hydrogen and oxygen by the harvested electrical energy from mechanical actions. This research is expected to pave the way for producing green hydrogen anywhere, by utilizing the mechanical energy from nature such as raindrops, wind, and the movement of vehicles.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advanced Energy Materials

  • ISSN

    1614-6832

  • e-ISSN

    1614-6840

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    17

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    000929514000001

  • EID výsledku v databázi Scopus

    2-s2.0-85148029318