First-principles guidelines to select promising van der Waals materials for hybrid photovoltaic-triboelectric nanogenerators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376578" target="_blank" >RIV/68407700:21230/24:00376578 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1039/d4nr02217c" target="_blank" >https://doi.org/10.1039/d4nr02217c</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d4nr02217c" target="_blank" >10.1039/d4nr02217c</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
First-principles guidelines to select promising van der Waals materials for hybrid photovoltaic-triboelectric nanogenerators
Popis výsledku v původním jazyce
Photovoltaic (PV) devices play a key role in solar-to-electricity energy conversion at small and large scales; unfortunately, their efficiency heavily depends on optimal weather and environmental conditions. The optimal scenario would be to extend the capabilities of PV devices so that they are also able to harvest energy from environmental sources other than light. An optimal solution is represented by hybrid photovoltaic-triboelectric (PV-TENG) devices which have both photovoltaic and triboelectric capabilities for electric power generation. Two-dimensional transition metal dichalcogenides (TMDs) are highly promising candidates for such PV-TENG devices, thanks to the easy tunability of their electrical, optical, mechanical, and chemical properties. In this respect, we here propose a quantum mechanical study to identify suitable TMD-based chemical compositions with optimal photovoltaic and triboelectric generation properties. Among the considered materials, we identify MoTe2/WS2, MoS2/WSe2, WS2/TiO2, WS2/IrO2, and MoS2/WTe2 as the most promising bilayer compositions; under operative conditions, the band gap varies in the range 0.51-1.61 eV, ensuring the photovoltaic activity, while the relative motion of the layers may produce an electromotive force between 1.21 and 3.21 V (triboelectric generation) with a TMD/TMD interface area equal to about 200 & Aring;2. The results constitute theoretical guidelines on how to check if specific chemical compositions of TMD bilayers are optimal for a combined photovoltaic and triboelectric power generation. Thanks to its generality, the presented approach can be promptly extended to van der Waals heterostructures other than those here considered and implemented in automated workflows for the search of novel low-dimensional materials with target PV and TENG response. Hybrid photovoltaic-triboelectric nanogenerator (PV-TENG) devices are promising multi-energy harvesters. We provide theoretical guidelines to identify TMD chemical compositions for optimal PV-TENG electric power generation.
Název v anglickém jazyce
First-principles guidelines to select promising van der Waals materials for hybrid photovoltaic-triboelectric nanogenerators
Popis výsledku anglicky
Photovoltaic (PV) devices play a key role in solar-to-electricity energy conversion at small and large scales; unfortunately, their efficiency heavily depends on optimal weather and environmental conditions. The optimal scenario would be to extend the capabilities of PV devices so that they are also able to harvest energy from environmental sources other than light. An optimal solution is represented by hybrid photovoltaic-triboelectric (PV-TENG) devices which have both photovoltaic and triboelectric capabilities for electric power generation. Two-dimensional transition metal dichalcogenides (TMDs) are highly promising candidates for such PV-TENG devices, thanks to the easy tunability of their electrical, optical, mechanical, and chemical properties. In this respect, we here propose a quantum mechanical study to identify suitable TMD-based chemical compositions with optimal photovoltaic and triboelectric generation properties. Among the considered materials, we identify MoTe2/WS2, MoS2/WSe2, WS2/TiO2, WS2/IrO2, and MoS2/WTe2 as the most promising bilayer compositions; under operative conditions, the band gap varies in the range 0.51-1.61 eV, ensuring the photovoltaic activity, while the relative motion of the layers may produce an electromotive force between 1.21 and 3.21 V (triboelectric generation) with a TMD/TMD interface area equal to about 200 & Aring;2. The results constitute theoretical guidelines on how to check if specific chemical compositions of TMD bilayers are optimal for a combined photovoltaic and triboelectric power generation. Thanks to its generality, the presented approach can be promptly extended to van der Waals heterostructures other than those here considered and implemented in automated workflows for the search of novel low-dimensional materials with target PV and TENG response. Hybrid photovoltaic-triboelectric nanogenerator (PV-TENG) devices are promising multi-energy harvesters. We provide theoretical guidelines to identify TMD chemical compositions for optimal PV-TENG electric power generation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nanoscale
ISSN
2040-3364
e-ISSN
2040-3372
Svazek periodika
16
Číslo periodika v rámci svazku
35
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
16582-16592
Kód UT WoS článku
001293123300001
EID výsledku v databázi Scopus
2-s2.0-85201908827