Diagnostics of Interturn Short Circuits in PMSMs With Online Fault Indicators Estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU151025" target="_blank" >RIV/00216305:26620/24:PU151025 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10449893" target="_blank" >https://ieeexplore.ieee.org/document/10449893</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TIE.2024.3363775" target="_blank" >10.1109/TIE.2024.3363775</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Diagnostics of Interturn Short Circuits in PMSMs With Online Fault Indicators Estimation
Popis výsledku v původním jazyce
This article presents novel model-based diagnostics of interturn short circuits in permanent magnet synchronous machines that enable estimating fault location and its severity, even during transients. The proposed method utilizes recursive parametric estimation and model comparison approaches cast in a decision-making framework to track motor parameters and fault indicators from a machine's discrete-time model. The discrete-time prototype is derived from an advanced motor model that reflects the stator winding arrangement in a motor's case. The fault detection is then performed by tracking the changes in the estimated probability density function of the electrical parameters, using the Kullback-Leibler divergence. The fault location is subsequently evaluated by performing a recursive comparison of the predefined fault models in the different phases, utilizing a growing-window approach. Ultimately, a parametric estimation algorithm applied to the fault current model allows identifying the fault severity. The diagnostic algorithm has been validated via laboratory experiments, and its capabilities are compared with other approaches enabling severity estimation.
Název v anglickém jazyce
Diagnostics of Interturn Short Circuits in PMSMs With Online Fault Indicators Estimation
Popis výsledku anglicky
This article presents novel model-based diagnostics of interturn short circuits in permanent magnet synchronous machines that enable estimating fault location and its severity, even during transients. The proposed method utilizes recursive parametric estimation and model comparison approaches cast in a decision-making framework to track motor parameters and fault indicators from a machine's discrete-time model. The discrete-time prototype is derived from an advanced motor model that reflects the stator winding arrangement in a motor's case. The fault detection is then performed by tracking the changes in the estimated probability density function of the electrical parameters, using the Kullback-Leibler divergence. The fault location is subsequently evaluated by performing a recursive comparison of the predefined fault models in the different phases, utilizing a growing-window approach. Ultimately, a parametric estimation algorithm applied to the fault current model allows identifying the fault severity. The diagnostic algorithm has been validated via laboratory experiments, and its capabilities are compared with other approaches enabling severity estimation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Industrial Electronics
ISSN
0278-0046
e-ISSN
1557-9948
Svazek periodika
71
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
15001-15011
Kód UT WoS článku
001181523500001
EID výsledku v databázi Scopus
2-s2.0-85186978267