Engineering 2D Material Exciton Line Shape with Graphene/<i>h</i>-BN Encapsulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU151422" target="_blank" >RIV/00216305:26620/24:PU151422 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.nanolett.3c05063" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.nanolett.3c05063</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.nanolett.3c05063" target="_blank" >10.1021/acs.nanolett.3c05063</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Engineering 2D Material Exciton Line Shape with Graphene/<i>h</i>-BN Encapsulation
Popis výsledku v původním jazyce
Control over the optical properties of atomically thin two-dimensional (2D) layers, including those of transition metal dichalcogenides (TMDs), is needed for future optoelectronic applications. Here, the near-field coupling between TMDs and graphene/graphite is used to engineer the exciton line shape and charge state. Fano-like asymmetric spectral features are produced in WS2, MoSe2, and WSe2 van der Waals heterostructures combined with graphene, graphite, or jointly with hexagonal boron nitride (h-BN) as supporting or encapsulating layers. Furthermore, trion emission is suppressed in h-BN encapsulated WSe2/graphene with a neutral exciton red shift (44 meV) and binding energy reduction (30 meV). The response of these systems to electron beam and light probes is well-described in terms of 2D optical conductivities of the involved materials. Beyond fundamental insights into the interaction of TMD excitons with structured environments, this study opens an unexplored avenue toward shaping the spectral profile of narrow optical modes for application in nanophotonic devices.
Název v anglickém jazyce
Engineering 2D Material Exciton Line Shape with Graphene/<i>h</i>-BN Encapsulation
Popis výsledku anglicky
Control over the optical properties of atomically thin two-dimensional (2D) layers, including those of transition metal dichalcogenides (TMDs), is needed for future optoelectronic applications. Here, the near-field coupling between TMDs and graphene/graphite is used to engineer the exciton line shape and charge state. Fano-like asymmetric spectral features are produced in WS2, MoSe2, and WSe2 van der Waals heterostructures combined with graphene, graphite, or jointly with hexagonal boron nitride (h-BN) as supporting or encapsulating layers. Furthermore, trion emission is suppressed in h-BN encapsulated WSe2/graphene with a neutral exciton red shift (44 meV) and binding energy reduction (30 meV). The response of these systems to electron beam and light probes is well-described in terms of 2D optical conductivities of the involved materials. Beyond fundamental insights into the interaction of TMD excitons with structured environments, this study opens an unexplored avenue toward shaping the spectral profile of narrow optical modes for application in nanophotonic devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GM23-05119M" target="_blank" >GM23-05119M: Tvarované svazky pro novou éru elektronové mikroskopie a spektroskopie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nano Letters
ISSN
1530-6984
e-ISSN
1530-6992
Svazek periodika
24
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
3678-3685
Kód UT WoS článku
001183911200001
EID výsledku v databázi Scopus
2-s2.0-85187715409