Comparison of single and double pulse laser-induced breakdown spectroscopy for the detection of biomolecules tagged with photon-upconversion nanoparticles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU151521" target="_blank" >RIV/00216305:26620/24:PU151521 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/24:00135612
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0003267024002198?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0003267024002198?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aca.2024.342418" target="_blank" >10.1016/j.aca.2024.342418</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of single and double pulse laser-induced breakdown spectroscopy for the detection of biomolecules tagged with photon-upconversion nanoparticles
Popis výsledku v původním jazyce
Background: Laser-induced breakdown spectroscopy (LIBS) is a well-recognized analytical technique used for elemental analysis. This method is gaining considerable attention also in biological applications thanks to its ability for spatial mapping and elemental imaging. The implementation of LIBS in the biomedical field is based on the detection of metals or other elements that either naturally occur in the samples or are present artificially. The artificial implementation of nanoparticle labels (Tag-LIBS) enables the use of LIBS as a readout technique for immunochemical assays. However, one of the biggest challenges for LIBS to meet immunoassay readout standards is its sensitivity. Results: This paper focuses on the improvement of LIBS sensitivity for the readout of nanoparticle-based immunoassays. First, the LIBS setup was optimized on photon-upconversion nanoparticle (UCNP) droplets deposited on the microtiter plate wells. Two collection optics systems were compared, with single pulse (SP) and collinear double pulse (DP) LIBS arrangements. By deploying the second laser pulse, the sensitivity was improved up to 30 times. The optimized SP and DP setups were then employed for the indirect detection of human serum albumin based on immunoassay with UCNP-based labels. Compared to our previous LIBS study, the detection limit was enhanced by two orders of magnitude, from 10 ng mL-1 to 0.29 ng mL-1. In addition, two other immunochemical methods were used for reference, based on the readout of upconversion luminescence of UCNPs and absorbance measurement with enzyme labels. Finally, the selectivity of the assay was tested and the practical potential of Tag-LIBS was demonstrated by the successful analysis of urine samples. Significance and novelty: In this work, we improved the sensitivity of the Tag-LIBS method by combining new labels based on UCNPs with the improved collection optics and collinear DP configuration. In the instrumental setup optimization, the DP LIBS showed
Název v anglickém jazyce
Comparison of single and double pulse laser-induced breakdown spectroscopy for the detection of biomolecules tagged with photon-upconversion nanoparticles
Popis výsledku anglicky
Background: Laser-induced breakdown spectroscopy (LIBS) is a well-recognized analytical technique used for elemental analysis. This method is gaining considerable attention also in biological applications thanks to its ability for spatial mapping and elemental imaging. The implementation of LIBS in the biomedical field is based on the detection of metals or other elements that either naturally occur in the samples or are present artificially. The artificial implementation of nanoparticle labels (Tag-LIBS) enables the use of LIBS as a readout technique for immunochemical assays. However, one of the biggest challenges for LIBS to meet immunoassay readout standards is its sensitivity. Results: This paper focuses on the improvement of LIBS sensitivity for the readout of nanoparticle-based immunoassays. First, the LIBS setup was optimized on photon-upconversion nanoparticle (UCNP) droplets deposited on the microtiter plate wells. Two collection optics systems were compared, with single pulse (SP) and collinear double pulse (DP) LIBS arrangements. By deploying the second laser pulse, the sensitivity was improved up to 30 times. The optimized SP and DP setups were then employed for the indirect detection of human serum albumin based on immunoassay with UCNP-based labels. Compared to our previous LIBS study, the detection limit was enhanced by two orders of magnitude, from 10 ng mL-1 to 0.29 ng mL-1. In addition, two other immunochemical methods were used for reference, based on the readout of upconversion luminescence of UCNPs and absorbance measurement with enzyme labels. Finally, the selectivity of the assay was tested and the practical potential of Tag-LIBS was demonstrated by the successful analysis of urine samples. Significance and novelty: In this work, we improved the sensitivity of the Tag-LIBS method by combining new labels based on UCNPs with the improved collection optics and collinear DP configuration. In the instrumental setup optimization, the DP LIBS showed
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Analytica Chimica Acta
ISSN
0003-2670
e-ISSN
1873-4324
Svazek periodika
1299
Číslo periodika v rámci svazku
342418
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
„“-„“
Kód UT WoS článku
001209691500001
EID výsledku v databázi Scopus
2-s2.0-85186271775