Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

3D printing of MAX/PLA filament: Electrochemical in-situ etching for enhanced energy conversion and storage

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU151611" target="_blank" >RIV/00216305:26620/24:PU151611 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43210/24:43924502 RIV/61989100:27240/24:10254814

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1388248123002278?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1388248123002278?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.elecom.2023.107652" target="_blank" >10.1016/j.elecom.2023.107652</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    3D printing of MAX/PLA filament: Electrochemical in-situ etching for enhanced energy conversion and storage

  • Popis výsledku v původním jazyce

    Two-dimensional (2D) MXenes are promising materials for a variety of sustainable energy-related applications such as photoelectrochemical water splitting and energy storage devices. Among the MXene family, the Ti3C2Tx is mostly prepared by selective etching of Al from the Ti3AlC2 MAX phase using hydrofluoric acid (HF) or in-situ produced HF as an etchant. However, the severe toxicity, handling of HF acid as well as the oxidation and degradation of freshly synthesized MXenes when stored as aqueous suspensions obstruct the large-scale production of MXenes. 3D printing is an innovative and versatile technology utilized for a plethora of applications in the field of energy applications. Thus, integration of 3D printing technology with the synthesis procedure of MXene will provide a new outlook for large-scale production and the long-storing capability of MXene. Herein, we fabricated a novel MAX (Ti3AlC2)/polylactic acid (PLA) filament for fused deposition modeling (FDM) 3D printing followed by etching of the 3D-printed MAX/PLA electrode into 3DP-etched-MAX employing chronoamperometry technique consecutively in 9 M HCl and 4 M NaOH as electrolytes. The 3D printed electrochemically etched MAX (3DP-etched-MAX) electrode shows promising behaviour for the photoelectrochemical hydrogen evolution reaction (HER) and capacitive performance. In general, this work demonstrates a path of production of large-scale manufacturing of MAX/PLA filament and 3DP-etched-MAX electrodes without using toxic HF for energy conversion and energy storage applications. This work paves the way to fabricate other novel MAX filaments and electrodes for several applications beyond energy conversion and storage.

  • Název v anglickém jazyce

    3D printing of MAX/PLA filament: Electrochemical in-situ etching for enhanced energy conversion and storage

  • Popis výsledku anglicky

    Two-dimensional (2D) MXenes are promising materials for a variety of sustainable energy-related applications such as photoelectrochemical water splitting and energy storage devices. Among the MXene family, the Ti3C2Tx is mostly prepared by selective etching of Al from the Ti3AlC2 MAX phase using hydrofluoric acid (HF) or in-situ produced HF as an etchant. However, the severe toxicity, handling of HF acid as well as the oxidation and degradation of freshly synthesized MXenes when stored as aqueous suspensions obstruct the large-scale production of MXenes. 3D printing is an innovative and versatile technology utilized for a plethora of applications in the field of energy applications. Thus, integration of 3D printing technology with the synthesis procedure of MXene will provide a new outlook for large-scale production and the long-storing capability of MXene. Herein, we fabricated a novel MAX (Ti3AlC2)/polylactic acid (PLA) filament for fused deposition modeling (FDM) 3D printing followed by etching of the 3D-printed MAX/PLA electrode into 3DP-etched-MAX employing chronoamperometry technique consecutively in 9 M HCl and 4 M NaOH as electrolytes. The 3D printed electrochemically etched MAX (3DP-etched-MAX) electrode shows promising behaviour for the photoelectrochemical hydrogen evolution reaction (HER) and capacitive performance. In general, this work demonstrates a path of production of large-scale manufacturing of MAX/PLA filament and 3DP-etched-MAX electrodes without using toxic HF for energy conversion and energy storage applications. This work paves the way to fabricate other novel MAX filaments and electrodes for several applications beyond energy conversion and storage.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ELECTROCHEMISTRY COMMUNICATIONS

  • ISSN

    1388-2481

  • e-ISSN

    1873-1902

  • Svazek periodika

    160

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    001162786500001

  • EID výsledku v databázi Scopus

    2-s2.0-85183787201