Hydrofluoric acid-free etched MAX on 3D-printed nanocarbon electrode for photoelectrochemical hydrogen production
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU155435" target="_blank" >RIV/00216305:26620/24:PU155435 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43210/24:43924381 RIV/61989100:27240/24:10254780
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352940723002640?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352940723002640?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apmt.2023.101995" target="_blank" >10.1016/j.apmt.2023.101995</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hydrofluoric acid-free etched MAX on 3D-printed nanocarbon electrode for photoelectrochemical hydrogen production
Popis výsledku v původním jazyce
MXenes have emerged as a promising material for a disparate range of photo-electrochemical conversion and energy storage devices. However, most reported synthesis process involves hydrofluoric acid (HF) and fluoridebased compounds. HF severe toxicity persists impediment to the scalable production and fabrication of MXenes. Thus, fluoride-free protocols are currently being explored. Here, we demonstrate a novel fluoride-free protocol for the etching of the MAX phase (Ti3AlC2) utilizing an acidic mixture of nitric acid, phosphoric acid, and acetic acid. Such acidic etching modulated the electronic structure and chemical composition of the MAX surface converting it into MAX-derived flower-like titanium phosphate and titanium oxide which boosts its photoelectrochemical properties. The photo-electrochemical hydrogen evolution reaction is evaluated using 3Dprinted and screen-printed carbon electrodes exposing under visible light illumination with 365 and 460 nm wavelengths. Such HF-free etched Ti3AlC2 MAX and the MAX-derived flower-like titanium phosphate and titanium oxide coated 3D-printed nanocarbon and screen-printed carbon electrodes demonstrate a novel process to be applied for an energy conversion application. This work will pave the way to etch other MAX phases through an environment-friendly and easy-handling technique that is to be used beyond photo-electrochemical applications.
Název v anglickém jazyce
Hydrofluoric acid-free etched MAX on 3D-printed nanocarbon electrode for photoelectrochemical hydrogen production
Popis výsledku anglicky
MXenes have emerged as a promising material for a disparate range of photo-electrochemical conversion and energy storage devices. However, most reported synthesis process involves hydrofluoric acid (HF) and fluoridebased compounds. HF severe toxicity persists impediment to the scalable production and fabrication of MXenes. Thus, fluoride-free protocols are currently being explored. Here, we demonstrate a novel fluoride-free protocol for the etching of the MAX phase (Ti3AlC2) utilizing an acidic mixture of nitric acid, phosphoric acid, and acetic acid. Such acidic etching modulated the electronic structure and chemical composition of the MAX surface converting it into MAX-derived flower-like titanium phosphate and titanium oxide which boosts its photoelectrochemical properties. The photo-electrochemical hydrogen evolution reaction is evaluated using 3Dprinted and screen-printed carbon electrodes exposing under visible light illumination with 365 and 460 nm wavelengths. Such HF-free etched Ti3AlC2 MAX and the MAX-derived flower-like titanium phosphate and titanium oxide coated 3D-printed nanocarbon and screen-printed carbon electrodes demonstrate a novel process to be applied for an energy conversion application. This work will pave the way to etch other MAX phases through an environment-friendly and easy-handling technique that is to be used beyond photo-electrochemical applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26896X" target="_blank" >GX19-26896X: Elektrochemie 2D Nanomateriálů</a><br>
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Materials Today
ISSN
2352-9407
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
101995
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
„“-„“
Kód UT WoS článku
001135580600001
EID výsledku v databázi Scopus
2-s2.0-85178998233