Parallel Computing Utilization in Nonlinear Model Predictive Control of Permanent Magnet Synchronous Motor
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU152233" target="_blank" >RIV/00216305:26620/24:PU152233 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10669580" target="_blank" >https://ieeexplore.ieee.org/document/10669580</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3456432" target="_blank" >10.1109/ACCESS.2024.3456432</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parallel Computing Utilization in Nonlinear Model Predictive Control of Permanent Magnet Synchronous Motor
Popis výsledku v původním jazyce
Permanent Magnet Synchronous Motor (PMSM) drives are widely used for motion control industrial applications and electrical vehicle powertrains, where they provide a good torque-to-weight ratio and a high dynamical performance. With the increasing usage of these machines, the demands on exploiting their abilities are also growing. Usual control techniques, such as field-oriented control (FOC), need some workaround to achieve the requested behavior, e.g., field-weakening, while keeping the constraints on the stator currents. Similarly, when applying the linear model predictive control, the linearization of the torque function and defined constraints lead to a loss of essential information and sub-optimal performance. That is the reason why the application of nonlinear theory is necessary. Nonlinear Model Predictive Control (NMPC) is a promising alternative to linear control methods. However, this approach has a major drawback in its computational demands. This paper presents a novel approach to the implementation of PMSMs' NMPC. The proposed controller utilizes the native parallelism of population-based optimization methods and the supreme performance of field-programmable gate arrays to solve the nonlinear optimization problem in the time necessary for proper motor control. The paper presents the verification of the algorithm's behavior both in simulation and laboratory experiments. The proposed controller's behavior is compared to the standard control technique of FOC and linear MPC. The achieved results prove the superior quality of control performed by NMPC in comparison with FOC and LMPC. The controller was able to follow the Maximal Torque Per Ampere strategy without any supplementary algorithm, altogether with constraint handling.
Název v anglickém jazyce
Parallel Computing Utilization in Nonlinear Model Predictive Control of Permanent Magnet Synchronous Motor
Popis výsledku anglicky
Permanent Magnet Synchronous Motor (PMSM) drives are widely used for motion control industrial applications and electrical vehicle powertrains, where they provide a good torque-to-weight ratio and a high dynamical performance. With the increasing usage of these machines, the demands on exploiting their abilities are also growing. Usual control techniques, such as field-oriented control (FOC), need some workaround to achieve the requested behavior, e.g., field-weakening, while keeping the constraints on the stator currents. Similarly, when applying the linear model predictive control, the linearization of the torque function and defined constraints lead to a loss of essential information and sub-optimal performance. That is the reason why the application of nonlinear theory is necessary. Nonlinear Model Predictive Control (NMPC) is a promising alternative to linear control methods. However, this approach has a major drawback in its computational demands. This paper presents a novel approach to the implementation of PMSMs' NMPC. The proposed controller utilizes the native parallelism of population-based optimization methods and the supreme performance of field-programmable gate arrays to solve the nonlinear optimization problem in the time necessary for proper motor control. The paper presents the verification of the algorithm's behavior both in simulation and laboratory experiments. The proposed controller's behavior is compared to the standard control technique of FOC and linear MPC. The achieved results prove the superior quality of control performed by NMPC in comparison with FOC and LMPC. The controller was able to follow the Maximal Torque Per Ampere strategy without any supplementary algorithm, altogether with constraint handling.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/9A22002" target="_blank" >9A22002: Artificial Intelligence using Quantum measured Information for realtime distributed systems at the edge</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
Neuvedeno
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
128187-128200
Kód UT WoS článku
001316123700001
EID výsledku v databázi Scopus
2-s2.0-85204103013