Biodegradable WE43 Mg alloy/hydroxyapatite interpenetrating phase composites with reduced hydrogen evolution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU152324" target="_blank" >RIV/00216305:26620/24:PU152324 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2452199X24003876" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2452199X24003876</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bioactmat.2024.08.048" target="_blank" >10.1016/j.bioactmat.2024.08.048</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Biodegradable WE43 Mg alloy/hydroxyapatite interpenetrating phase composites with reduced hydrogen evolution
Popis výsledku v původním jazyce
Biodegradable magnesium implants offer a solution for bone repair without the need for implant removal. However, concerns persist regarding peri-implant gas accumulation, which has limited their widespread clinical acceptance. Consequently, there is a need to minimise the mass of magnesium to reduce the total volume of gas generated around the implants. Incorporating porosity is a direct approach to reducing the mass of the implants, but it also decreases the strength and degradation resistance. This study demonstrates that the infiltration of a calcium phosphate cement into an additively manufactured WE43 Mg alloy scaffold with 75 % porosity, followed by hydrothermal treatment, yields biodegradable magnesium/hydroxyapatite interpenetrating phase composites that generate an order of magnitude less hydrogen gas during degradation than WE43 scaffolds. The enhanced degradation resistance results from magnesium passivation, allowing osteoblast proliferation in indirect contact with composites. Additionally, the composites exhibit a compressive strength 1.8 times greater than that of the scaffolds, falling within the upper range of the compressive strength of cancellous bone. These results emphasise the potential of the new biodegradable interpenetrating phase composites for the fabrication of temporary osteosynthesis devices. Optimizing cement hardening and magnesium passivation during hydrothermal processing is crucial for achieving both high compressive strength and low degradation rate.
Název v anglickém jazyce
Biodegradable WE43 Mg alloy/hydroxyapatite interpenetrating phase composites with reduced hydrogen evolution
Popis výsledku anglicky
Biodegradable magnesium implants offer a solution for bone repair without the need for implant removal. However, concerns persist regarding peri-implant gas accumulation, which has limited their widespread clinical acceptance. Consequently, there is a need to minimise the mass of magnesium to reduce the total volume of gas generated around the implants. Incorporating porosity is a direct approach to reducing the mass of the implants, but it also decreases the strength and degradation resistance. This study demonstrates that the infiltration of a calcium phosphate cement into an additively manufactured WE43 Mg alloy scaffold with 75 % porosity, followed by hydrothermal treatment, yields biodegradable magnesium/hydroxyapatite interpenetrating phase composites that generate an order of magnitude less hydrogen gas during degradation than WE43 scaffolds. The enhanced degradation resistance results from magnesium passivation, allowing osteoblast proliferation in indirect contact with composites. Additionally, the composites exhibit a compressive strength 1.8 times greater than that of the scaffolds, falling within the upper range of the compressive strength of cancellous bone. These results emphasise the potential of the new biodegradable interpenetrating phase composites for the fabrication of temporary osteosynthesis devices. Optimizing cement hardening and magnesium passivation during hydrothermal processing is crucial for achieving both high compressive strength and low degradation rate.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/NW24-10-00195" target="_blank" >NW24-10-00195: Personalizovaná rekonstrukce kosti s rychlou osseointegrací a antibakteriální titanové implantáty po chirurgické resekci osteosarkomu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bioactive Materials
ISSN
2452-199X
e-ISSN
—
Svazek periodika
42
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
12
Strana od-do
519-530
Kód UT WoS článku
001318263000001
EID výsledku v databázi Scopus
2-s2.0-85203454108