Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparative analysis of surface layer functionality in STM and AFM probes: Effects of coating on emission characteristics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU152327" target="_blank" >RIV/00216305:26620/24:PU152327 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68081723:_____/24:00597951 RIV/68081731:_____/24:00597917

  • Výsledek na webu

    <a href="https://sciendo.com/article/10.2478/jee-2024-0033" target="_blank" >https://sciendo.com/article/10.2478/jee-2024-0033</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/jee-2024-0033" target="_blank" >10.2478/jee-2024-0033</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparative analysis of surface layer functionality in STM and AFM probes: Effects of coating on emission characteristics

  • Popis výsledku v původním jazyce

    This study compares different types of scanning probe microscopy (SPM) probes according to the function of the surface layer at the tip apex. Three main types of SPM probes were analyzed: scanning tunneling microscopy (STM) tungsten probes, conductive atomic force microscopy (AFM) probes, and non-conductive AFM probes. The tungsten STM probes were coated with a graphite layer to simulate the effects of carbonization. The tested AFM probes were specifically NenoProbe conductive AFM probes (platinum-coated tip) and Akiyama non-conductive AFM probes coated with gold. The gold coating is intended to improve surface conductivity and help achieve a homogeneous, oxidation-resistant surface. The three samples were measured in a field emission microscope to study their current-voltage characteristics. The obtained current-voltage characteristics were tested and analyzed by the Forbes field emission orthodoxy test, providing the field emission parameters that correlate with the state of the scanning probe tip. In this study, the most important parameter is the formal emission area parameter, which indicates the formal tunneling current density through the probe tip-sample nanogap. For an STM tip, this reflects the size and shape of the region from which electrons tunnel to the sample surface. If this area is larger than expected or desired, it may indicate problems with tip function or tip wear. This information is critical for evaluating the performance and accuracy of the STM tip and can help diagnose problems and optimize its function.

  • Název v anglickém jazyce

    Comparative analysis of surface layer functionality in STM and AFM probes: Effects of coating on emission characteristics

  • Popis výsledku anglicky

    This study compares different types of scanning probe microscopy (SPM) probes according to the function of the surface layer at the tip apex. Three main types of SPM probes were analyzed: scanning tunneling microscopy (STM) tungsten probes, conductive atomic force microscopy (AFM) probes, and non-conductive AFM probes. The tungsten STM probes were coated with a graphite layer to simulate the effects of carbonization. The tested AFM probes were specifically NenoProbe conductive AFM probes (platinum-coated tip) and Akiyama non-conductive AFM probes coated with gold. The gold coating is intended to improve surface conductivity and help achieve a homogeneous, oxidation-resistant surface. The three samples were measured in a field emission microscope to study their current-voltage characteristics. The obtained current-voltage characteristics were tested and analyzed by the Forbes field emission orthodoxy test, providing the field emission parameters that correlate with the state of the scanning probe tip. In this study, the most important parameter is the formal emission area parameter, which indicates the formal tunneling current density through the probe tip-sample nanogap. For an STM tip, this reflects the size and shape of the region from which electrons tunnel to the sample surface. If this area is larger than expected or desired, it may indicate problems with tip function or tip wear. This information is critical for evaluating the performance and accuracy of the STM tip and can help diagnose problems and optimize its function.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FW03010504" target="_blank" >FW03010504: Vývoj in-situ technik pro charakterizaci materiálů a nanostruktur</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Electrical Engineering

  • ISSN

    1335-3632

  • e-ISSN

    1339-309X

  • Svazek periodika

    75

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    SK - Slovenská republika

  • Počet stran výsledku

    7

  • Strana od-do

    268-274

  • Kód UT WoS článku

    001288026300001

  • EID výsledku v databázi Scopus

    2-s2.0-85201095770