The Dispersion-Strengthening Effect of TiN Nanoparticles Evoked by Ex Situ Nitridation of Gas-Atomized, NiCu-Based Alloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU152632" target="_blank" >RIV/00216305:26620/24:PU152632 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2504-4494/8/5/223" target="_blank" >https://www.mdpi.com/2504-4494/8/5/223</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/jmmp8050223" target="_blank" >10.3390/jmmp8050223</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Dispersion-Strengthening Effect of TiN Nanoparticles Evoked by Ex Situ Nitridation of Gas-Atomized, NiCu-Based Alloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusion
Popis výsledku v původním jazyce
Throughout recent years, the implementation of nanoparticles into the microstructure of additively manufactured (AM) parts has gained great attention in the material science community. The dispersion strengthening (DS) effect achieved leads to a substantial improvement in the mechanical properties of the alloy used. In this work, an ex situ approach of powder conditioning prior to the AM process as per a newly developed fluidized bed reactor (FBR) was applied to a titanium-enriched variant of the NiCu-based Alloy 400. Powders were investigated before and after FBR exposure, and it was found that the conditioning led to a significant increase in the TiN formation along grain boundaries. Manufactured to parts via laser-based powder bed fusion of metals (PBF-LB/M), the ex situ FBR approach not only revealed a superior microstructure compared to unconditioned parts but also with respect to a recently introduced in situ approach based on a gas atomization reaction synthesis (GARS). A substantially higher number of nanoparticles formed along cell walls and enabled an effective suppression of dislocation movement, resulting in excellent tensile, creep, and fatigue properties, even at elevated temperatures up to 750 degrees C. Such outstanding properties have never been documented for AM-processed Alloy 400, which is why the demonstrated FBR ex situ conditioning marks a promising modification route for future alloy systems.
Název v anglickém jazyce
The Dispersion-Strengthening Effect of TiN Nanoparticles Evoked by Ex Situ Nitridation of Gas-Atomized, NiCu-Based Alloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusion
Popis výsledku anglicky
Throughout recent years, the implementation of nanoparticles into the microstructure of additively manufactured (AM) parts has gained great attention in the material science community. The dispersion strengthening (DS) effect achieved leads to a substantial improvement in the mechanical properties of the alloy used. In this work, an ex situ approach of powder conditioning prior to the AM process as per a newly developed fluidized bed reactor (FBR) was applied to a titanium-enriched variant of the NiCu-based Alloy 400. Powders were investigated before and after FBR exposure, and it was found that the conditioning led to a significant increase in the TiN formation along grain boundaries. Manufactured to parts via laser-based powder bed fusion of metals (PBF-LB/M), the ex situ FBR approach not only revealed a superior microstructure compared to unconditioned parts but also with respect to a recently introduced in situ approach based on a gas atomization reaction synthesis (GARS). A substantially higher number of nanoparticles formed along cell walls and enabled an effective suppression of dislocation movement, resulting in excellent tensile, creep, and fatigue properties, even at elevated temperatures up to 750 degrees C. Such outstanding properties have never been documented for AM-processed Alloy 400, which is why the demonstrated FBR ex situ conditioning marks a promising modification route for future alloy systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Manufacturing and Materials Processing
ISSN
2504-4494
e-ISSN
—
Svazek periodika
223
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
29
Strana od-do
„“-„“
Kód UT WoS článku
001340933400001
EID výsledku v databázi Scopus
2-s2.0-85207683743