The Dispersion-Strengthening Effect of TiN NanoparticlesnEvoked by Ex Situ Nitridation of Gas-Atomized, NiCu-BasednAlloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F24%3A00598934" target="_blank" >RIV/68081723:_____/24:00598934 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2504-4494/8/5/223" target="_blank" >https://www.mdpi.com/2504-4494/8/5/223</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/jmmp8050223" target="_blank" >10.3390/jmmp8050223</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Dispersion-Strengthening Effect of TiN NanoparticlesnEvoked by Ex Situ Nitridation of Gas-Atomized, NiCu-BasednAlloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusion
Popis výsledku v původním jazyce
Throughout recent years, the implementation of nanoparticles into the microstructure ofnadditively manufactured (AM) parts has gained great attention in the material science community.nThe dispersion strengthening (DS) effect achieved leads to a substantial improvement in the mechani cal properties of the alloy used. In this work, an ex situ approach of powder conditioning prior to thenAM process as per a newly developed fluidized bed reactor (FBR) was applied to a titanium-enrichednvariant of the NiCu-based Alloy 400. Powders were investigated before and after FBR exposure,nand it was found that the conditioning led to a significant increase in the TiN formation along grainnboundaries. Manufactured to parts via laser-based powder bed fusion of metals (PBF-LB/M), the exnsitu FBR approach not only revealed a superior microstructure compared to unconditioned parts butnalso with respect to a recently introduced in situ approach based on a gas atomization reaction syn thesis (GARS). A substantially higher number of nanoparticles formed along cell walls and enablednan effective suppression of dislocation movement, resulting in excellent tensile, creep, and fatiguenproperties, even at elevated temperatures up to 750 ◦C. Such outstanding properties have never beenndocumented for AM-processed Alloy 400, which is why the demonstrated FBR ex situ conditioningnmarks a promising modification route for future alloy systems
Název v anglickém jazyce
The Dispersion-Strengthening Effect of TiN NanoparticlesnEvoked by Ex Situ Nitridation of Gas-Atomized, NiCu-BasednAlloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusion
Popis výsledku anglicky
Throughout recent years, the implementation of nanoparticles into the microstructure ofnadditively manufactured (AM) parts has gained great attention in the material science community.nThe dispersion strengthening (DS) effect achieved leads to a substantial improvement in the mechani cal properties of the alloy used. In this work, an ex situ approach of powder conditioning prior to thenAM process as per a newly developed fluidized bed reactor (FBR) was applied to a titanium-enrichednvariant of the NiCu-based Alloy 400. Powders were investigated before and after FBR exposure,nand it was found that the conditioning led to a significant increase in the TiN formation along grainnboundaries. Manufactured to parts via laser-based powder bed fusion of metals (PBF-LB/M), the exnsitu FBR approach not only revealed a superior microstructure compared to unconditioned parts butnalso with respect to a recently introduced in situ approach based on a gas atomization reaction syn thesis (GARS). A substantially higher number of nanoparticles formed along cell walls and enablednan effective suppression of dislocation movement, resulting in excellent tensile, creep, and fatiguenproperties, even at elevated temperatures up to 750 ◦C. Such outstanding properties have never beenndocumented for AM-processed Alloy 400, which is why the demonstrated FBR ex situ conditioningnmarks a promising modification route for future alloy systems
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Manufacturing and Materials Processing
ISSN
2504-4494
e-ISSN
2504-4494
Svazek periodika
8
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
29
Strana od-do
223
Kód UT WoS článku
001340933400001
EID výsledku v databázi Scopus
2-s2.0-85207683743