Shattering the Water Window: Comprehensive Mapping of Faradaic Reactions on Bioelectronics Electrodes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU152633" target="_blank" >RIV/00216305:26620/24:PU152633 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/24:00139038
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsami.4c12268" target="_blank" >https://pubs.acs.org/doi/10.1021/acsami.4c12268</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.4c12268" target="_blank" >10.1021/acsami.4c12268</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Shattering the Water Window: Comprehensive Mapping of Faradaic Reactions on Bioelectronics Electrodes
Popis výsledku v původním jazyce
It is generally accepted that for safe use of neural interface electrodes, irreversible faradaic reactions should be avoided in favor of capacitive charge injection. However, in some cases, faradaic reactions can be desirable for controlling specific (electro)physiological outcomes or for biosensing purposes. This study aims to systematically map the basic faradaic reactions occurring at bioelectronic electrode interfaces. We analyze archetypical platinum-iridium (PtIr), the most commonly used electrode material in biomedical implants. By providing a detailed guide to these reactions and the factors that influence them, we offer a valuable resource for researchers seeking to suppress or exploit faradaic reactions in various electrode materials. We employed a combination of electrochemical techniques and direct quantification methods, including amperometric, potentiometric, and spectrophotometric assays, to measure O-2, H-2, pH, H2O2, Cl-2/OCl-, and soluble platinum and iridium ions. We compared phosphate-buffered saline (PBS) with an unbuffered electrolyte and complex cell culture media containing proteins. Our results reveal that the "water window" the potential range without significant water electrolysis varies depending on the electrolyte used. In the culture medium that is rich with redox-active species, a window of potentials where no faradaic process occurs essentially does not exist. Under cathodic polarizations, significant pH increases (alkalization) were observed, while anodic water splitting competes with other processes in media, preventing prevalent acidification. We quantified the oxygen reduction reaction and accumulation of H2O2 as a byproduct. PtIr efficiently deoxygenates the electrolyte under low cathodic polarizations, generating local hypoxia. Under anodic polarizations, chloride oxidation competes with oxygen evolution, producing relatively high and cytotoxic concentrations of hypochlorite (OCl-) under certain conditions. These oxidative proce
Název v anglickém jazyce
Shattering the Water Window: Comprehensive Mapping of Faradaic Reactions on Bioelectronics Electrodes
Popis výsledku anglicky
It is generally accepted that for safe use of neural interface electrodes, irreversible faradaic reactions should be avoided in favor of capacitive charge injection. However, in some cases, faradaic reactions can be desirable for controlling specific (electro)physiological outcomes or for biosensing purposes. This study aims to systematically map the basic faradaic reactions occurring at bioelectronic electrode interfaces. We analyze archetypical platinum-iridium (PtIr), the most commonly used electrode material in biomedical implants. By providing a detailed guide to these reactions and the factors that influence them, we offer a valuable resource for researchers seeking to suppress or exploit faradaic reactions in various electrode materials. We employed a combination of electrochemical techniques and direct quantification methods, including amperometric, potentiometric, and spectrophotometric assays, to measure O-2, H-2, pH, H2O2, Cl-2/OCl-, and soluble platinum and iridium ions. We compared phosphate-buffered saline (PBS) with an unbuffered electrolyte and complex cell culture media containing proteins. Our results reveal that the "water window" the potential range without significant water electrolysis varies depending on the electrolyte used. In the culture medium that is rich with redox-active species, a window of potentials where no faradaic process occurs essentially does not exist. Under cathodic polarizations, significant pH increases (alkalization) were observed, while anodic water splitting competes with other processes in media, preventing prevalent acidification. We quantified the oxygen reduction reaction and accumulation of H2O2 as a byproduct. PtIr efficiently deoxygenates the electrolyte under low cathodic polarizations, generating local hypoxia. Under anodic polarizations, chloride oxidation competes with oxygen evolution, producing relatively high and cytotoxic concentrations of hypochlorite (OCl-) under certain conditions. These oxidative proce
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21000 - Nano-technology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-07432S" target="_blank" >GA23-07432S: Faradayův Skalpel: precizní ablace mozkové tkáně pomocí elektrochemické redukce kyslíku</a><br>
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS applied materials & interfaces
ISSN
1944-8244
e-ISSN
1944-8252
Svazek periodika
16
Číslo periodika v rámci svazku
40
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
53567-53576
Kód UT WoS článku
001326721500001
EID výsledku v databázi Scopus
2-s2.0-85205793842