Total least squares from a Bayesian perspective: Incorporating data-informed forgetting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU156314" target="_blank" >RIV/00216305:26620/24:PU156314 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10885920/metrics#metrics" target="_blank" >https://ieeexplore.ieee.org/document/10885920/metrics#metrics</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CDC56724.2024.10885920" target="_blank" >10.1109/CDC56724.2024.10885920</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Total least squares from a Bayesian perspective: Incorporating data-informed forgetting
Popis výsledku v původním jazyce
The real-time estimation of error-in-variables (EIV) models with unknown time-varying parameters is considered and resolved using a Bayesian framework. The stochastic model under consideration is a regression-type model that accounts for inherently inaccurate measurements, which are corrupted by the normal noise. The EIV model identification is traditionally performed via total least squares (TLS), relying on computationally intensive methods to numerically obtain a point estimate. Such a concept, despite its theoretical appeal, nevertheless lacks the ability to quantify the uncertainty associated with the parameter estimates. Thus, this limitation hinders the concept from being combined with the statistical decision-making strategies. The paper opens the way towards enriching the standard TLS in this respect. The enrichment is achieved by projecting the unnormalized posterior generated by the EIV parametric models onto the normal-Wishart distribution. This projection is made optimal by minimizing the Kullback-Leibler distance between the unnormalized and the normal-Wishart posteriors while imposing a hard equality constraint on the mean parameter scalar product. By establishing credible intervals for both the regression parameters and the noise precision, the resultant procedure is additionally endowed with Bayesian data-informed forgetting, which allows for effective operation in nonstationary environments.
Název v anglickém jazyce
Total least squares from a Bayesian perspective: Incorporating data-informed forgetting
Popis výsledku anglicky
The real-time estimation of error-in-variables (EIV) models with unknown time-varying parameters is considered and resolved using a Bayesian framework. The stochastic model under consideration is a regression-type model that accounts for inherently inaccurate measurements, which are corrupted by the normal noise. The EIV model identification is traditionally performed via total least squares (TLS), relying on computationally intensive methods to numerically obtain a point estimate. Such a concept, despite its theoretical appeal, nevertheless lacks the ability to quantify the uncertainty associated with the parameter estimates. Thus, this limitation hinders the concept from being combined with the statistical decision-making strategies. The paper opens the way towards enriching the standard TLS in this respect. The enrichment is achieved by projecting the unnormalized posterior generated by the EIV parametric models onto the normal-Wishart distribution. This projection is made optimal by minimizing the Kullback-Leibler distance between the unnormalized and the normal-Wishart posteriors while imposing a hard equality constraint on the mean parameter scalar product. By establishing credible intervals for both the regression parameters and the noise precision, the resultant procedure is additionally endowed with Bayesian data-informed forgetting, which allows for effective operation in nonstationary environments.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
63th IEEE Conference on Decision and Control
ISBN
979-8-3503-1633-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
5737-5744
Název nakladatele
IEEE
Místo vydání
NEW YORK
Místo konání akce
Milano
Datum konání akce
16. 12. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—