Ultrathin Indium Tin Oxide Accumulation Mode Electrolyte-Gated Transistors for Bioelectronics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F25%3APU154828" target="_blank" >RIV/00216305:26620/25:PU154828 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/admt.202302219" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/admt.202302219</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/admt.202302219" target="_blank" >10.1002/admt.202302219</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ultrathin Indium Tin Oxide Accumulation Mode Electrolyte-Gated Transistors for Bioelectronics
Popis výsledku v původním jazyce
Electrolyte-gated field effect transistors and electrochemical transistors have emerged as powerful components for bioelectronic sensors and biopotential recording devices. A set of parameters must be considered when developing devices to amplify weak electrophysiological signals. These include maximum transconductance values, cut-off frequencies, and large on/off current ratios. Organic polymer-based devices have recently dominated the field, especially when considering flexibility as a key factor. Oxide semiconductors may also offer these features, as well as advantages like higher mobility. Herein, flexible, ultrathin, indium tin oxide (ITO) electrolyte-gated transistors are reported. These accumulation-mode devices combine n-type operation with mu e = 9.5 cm2 Vs-1, high transconductance (gm = 44 mS), and on/off ratios (105) as well as optically transparent layouts. While oxides are normally considered brittle, mechanically flexible ITO layers are obtained by room temperature deposition of amorphous layers onto parylene C. This process results in low strain, producing devices that survive bending. ITO electrochemically degrades, however, with cycling. To overcome this, the surface is passivated with high dielectric constant inert capping layers of Ta2O5 or Ta2O5/AlN. This greatly improves stability while preserving low gate voltages. Based on their overall performance, ITO-based EGFETs are promising for bioelectronics. Conducting polymers is not the only way, inorganic oxides can make electrochemical transistors too. It is shown that ultrathin, flexible, ITO electrolyte-gated transistors are designed for bioelectronics. These transistors demonstrate high transconductance, excellent on/off ratios, and mechanical flexibility. Via surface passivation strategies are used to enhance the electrochemical stability of ITO, making these devices promising candidates for future in vivo and in vitro bioelectronic applications. image
Název v anglickém jazyce
Ultrathin Indium Tin Oxide Accumulation Mode Electrolyte-Gated Transistors for Bioelectronics
Popis výsledku anglicky
Electrolyte-gated field effect transistors and electrochemical transistors have emerged as powerful components for bioelectronic sensors and biopotential recording devices. A set of parameters must be considered when developing devices to amplify weak electrophysiological signals. These include maximum transconductance values, cut-off frequencies, and large on/off current ratios. Organic polymer-based devices have recently dominated the field, especially when considering flexibility as a key factor. Oxide semiconductors may also offer these features, as well as advantages like higher mobility. Herein, flexible, ultrathin, indium tin oxide (ITO) electrolyte-gated transistors are reported. These accumulation-mode devices combine n-type operation with mu e = 9.5 cm2 Vs-1, high transconductance (gm = 44 mS), and on/off ratios (105) as well as optically transparent layouts. While oxides are normally considered brittle, mechanically flexible ITO layers are obtained by room temperature deposition of amorphous layers onto parylene C. This process results in low strain, producing devices that survive bending. ITO electrochemically degrades, however, with cycling. To overcome this, the surface is passivated with high dielectric constant inert capping layers of Ta2O5 or Ta2O5/AlN. This greatly improves stability while preserving low gate voltages. Based on their overall performance, ITO-based EGFETs are promising for bioelectronics. Conducting polymers is not the only way, inorganic oxides can make electrochemical transistors too. It is shown that ultrathin, flexible, ITO electrolyte-gated transistors are designed for bioelectronics. These transistors demonstrate high transconductance, excellent on/off ratios, and mechanical flexibility. Via surface passivation strategies are used to enhance the electrochemical stability of ITO, making these devices promising candidates for future in vivo and in vitro bioelectronic applications. image
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2025
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Materials Technologies
ISSN
2365-709X
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
„2302219“-„“
Kód UT WoS článku
001308436100001
EID výsledku v databázi Scopus
2-s2.0-85203340401