Future of Drug Discovery: The Synergy of Edge Computing, Internet of Medical Things, and Deep Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00669806%3A_____%2F23%3A10458669" target="_blank" >RIV/00669806:_____/23:10458669 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11140/23:10458669
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rF1CQe9CVi" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rF1CQe9CVi</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/fi15040142" target="_blank" >10.3390/fi15040142</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Future of Drug Discovery: The Synergy of Edge Computing, Internet of Medical Things, and Deep Learning
Popis výsledku v původním jazyce
The global spread of COVID-19 highlights the urgency of quickly finding drugs and vaccines and suggests that similar challenges will arise in the future. This underscores the need for ongoing efforts to overcome the obstacles involved in the development of potential treatments. Although some progress has been made in the use of Artificial Intelligence (AI) in drug discovery, virologists, pharmaceutical companies, and investors seek more long-term solutions and greater investment in emerging technologies. One potential solution to aid in the drug-development process is to combine the capabilities of the Internet of Medical Things (IoMT), edge computing (EC), and deep learning (DL). Some practical frameworks and techniques utilizing EC, IoMT, and DL have been proposed for the monitoring and tracking of infected individuals or high-risk areas. However, these technologies have not been widely utilized in drug clinical trials. Given the time-consuming nature of traditional drug- and vaccine-development methods, there is a need for a new AI-based platform that can revolutionize the industry. One approach involves utilizing smartphones equipped with medical sensors to collect and transmit real-time physiological and healthcare information on clinical-trial participants to the nearest edge nodes (EN). This allows the verification of a vast amount of medical data for a large number of individuals in a short time frame, without the restrictions of latency, bandwidth, or security constraints. The collected information can be monitored by physicians and researchers to assess a vaccine's performance.
Název v anglickém jazyce
Future of Drug Discovery: The Synergy of Edge Computing, Internet of Medical Things, and Deep Learning
Popis výsledku anglicky
The global spread of COVID-19 highlights the urgency of quickly finding drugs and vaccines and suggests that similar challenges will arise in the future. This underscores the need for ongoing efforts to overcome the obstacles involved in the development of potential treatments. Although some progress has been made in the use of Artificial Intelligence (AI) in drug discovery, virologists, pharmaceutical companies, and investors seek more long-term solutions and greater investment in emerging technologies. One potential solution to aid in the drug-development process is to combine the capabilities of the Internet of Medical Things (IoMT), edge computing (EC), and deep learning (DL). Some practical frameworks and techniques utilizing EC, IoMT, and DL have been proposed for the monitoring and tracking of infected individuals or high-risk areas. However, these technologies have not been widely utilized in drug clinical trials. Given the time-consuming nature of traditional drug- and vaccine-development methods, there is a need for a new AI-based platform that can revolutionize the industry. One approach involves utilizing smartphones equipped with medical sensors to collect and transmit real-time physiological and healthcare information on clinical-trial participants to the nearest edge nodes (EN). This allows the verification of a vast amount of medical data for a large number of individuals in a short time frame, without the restrictions of latency, bandwidth, or security constraints. The collected information can be monitored by physicians and researchers to assess a vaccine's performance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30104 - Pharmacology and pharmacy
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Future Internet
ISSN
1999-5903
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
142
Kód UT WoS článku
000978298900001
EID výsledku v databázi Scopus
2-s2.0-85153686419