Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Future of Drug Discovery: The Synergy of Edge Computing, Internet of Medical Things, and Deep Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00669806%3A_____%2F23%3A10458669" target="_blank" >RIV/00669806:_____/23:10458669 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11140/23:10458669

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rF1CQe9CVi" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rF1CQe9CVi</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/fi15040142" target="_blank" >10.3390/fi15040142</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Future of Drug Discovery: The Synergy of Edge Computing, Internet of Medical Things, and Deep Learning

  • Popis výsledku v původním jazyce

    The global spread of COVID-19 highlights the urgency of quickly finding drugs and vaccines and suggests that similar challenges will arise in the future. This underscores the need for ongoing efforts to overcome the obstacles involved in the development of potential treatments. Although some progress has been made in the use of Artificial Intelligence (AI) in drug discovery, virologists, pharmaceutical companies, and investors seek more long-term solutions and greater investment in emerging technologies. One potential solution to aid in the drug-development process is to combine the capabilities of the Internet of Medical Things (IoMT), edge computing (EC), and deep learning (DL). Some practical frameworks and techniques utilizing EC, IoMT, and DL have been proposed for the monitoring and tracking of infected individuals or high-risk areas. However, these technologies have not been widely utilized in drug clinical trials. Given the time-consuming nature of traditional drug- and vaccine-development methods, there is a need for a new AI-based platform that can revolutionize the industry. One approach involves utilizing smartphones equipped with medical sensors to collect and transmit real-time physiological and healthcare information on clinical-trial participants to the nearest edge nodes (EN). This allows the verification of a vast amount of medical data for a large number of individuals in a short time frame, without the restrictions of latency, bandwidth, or security constraints. The collected information can be monitored by physicians and researchers to assess a vaccine&apos;s performance.

  • Název v anglickém jazyce

    Future of Drug Discovery: The Synergy of Edge Computing, Internet of Medical Things, and Deep Learning

  • Popis výsledku anglicky

    The global spread of COVID-19 highlights the urgency of quickly finding drugs and vaccines and suggests that similar challenges will arise in the future. This underscores the need for ongoing efforts to overcome the obstacles involved in the development of potential treatments. Although some progress has been made in the use of Artificial Intelligence (AI) in drug discovery, virologists, pharmaceutical companies, and investors seek more long-term solutions and greater investment in emerging technologies. One potential solution to aid in the drug-development process is to combine the capabilities of the Internet of Medical Things (IoMT), edge computing (EC), and deep learning (DL). Some practical frameworks and techniques utilizing EC, IoMT, and DL have been proposed for the monitoring and tracking of infected individuals or high-risk areas. However, these technologies have not been widely utilized in drug clinical trials. Given the time-consuming nature of traditional drug- and vaccine-development methods, there is a need for a new AI-based platform that can revolutionize the industry. One approach involves utilizing smartphones equipped with medical sensors to collect and transmit real-time physiological and healthcare information on clinical-trial participants to the nearest edge nodes (EN). This allows the verification of a vast amount of medical data for a large number of individuals in a short time frame, without the restrictions of latency, bandwidth, or security constraints. The collected information can be monitored by physicians and researchers to assess a vaccine&apos;s performance.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30104 - Pharmacology and pharmacy

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Future Internet

  • ISSN

    1999-5903

  • e-ISSN

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    15

  • Strana od-do

    142

  • Kód UT WoS článku

    000978298900001

  • EID výsledku v databázi Scopus

    2-s2.0-85153686419