A conceptual deep learning framework for COVID-19 drug discovery
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F21%3A43963863" target="_blank" >RIV/49777513:23220/21:43963863 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9666715" target="_blank" >https://ieeexplore.ieee.org/document/9666715</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/UEMCON53757.2021.9666715" target="_blank" >10.1109/UEMCON53757.2021.9666715</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A conceptual deep learning framework for COVID-19 drug discovery
Popis výsledku v původním jazyce
The analytical and experimental methods used for the development of drugs have some disadvantages in the aspect of the needed time for preparation of the desired parenthetical products and the efficiency of them, which not only can the risk for failure increase, particularly when pathogens are impossible to be cultivated under laboratory conditions, but these approaches can also lead to achieving arrays of antigens that are not able to provide sufficient immunity to combat the targeted disease. On the other hand, artificial intelligence (AI) and its new branches, including deep learning (DL) and machine learning (ML) techniques can be deployed for drug development purposes in order to alleviate the difficulties associated with conventional methods. Moreover, intelligent methods will provide researchers with the opportunity to use some userfriendly and efficient services to conquer such problems. In this respect, a conceptual DL framework has been studied in order to demonstrate the capability and applicability of these methods. Accordingly, a framework has been proposed to show how COVID-19 drug development can benefit from the potentials of AI and DL.
Název v anglickém jazyce
A conceptual deep learning framework for COVID-19 drug discovery
Popis výsledku anglicky
The analytical and experimental methods used for the development of drugs have some disadvantages in the aspect of the needed time for preparation of the desired parenthetical products and the efficiency of them, which not only can the risk for failure increase, particularly when pathogens are impossible to be cultivated under laboratory conditions, but these approaches can also lead to achieving arrays of antigens that are not able to provide sufficient immunity to combat the targeted disease. On the other hand, artificial intelligence (AI) and its new branches, including deep learning (DL) and machine learning (ML) techniques can be deployed for drug development purposes in order to alleviate the difficulties associated with conventional methods. Moreover, intelligent methods will provide researchers with the opportunity to use some userfriendly and efficient services to conquer such problems. In this respect, a conceptual DL framework has been studied in order to demonstrate the capability and applicability of these methods. Accordingly, a framework has been proposed to show how COVID-19 drug development can benefit from the potentials of AI and DL.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_069%2F0009855" target="_blank" >EF18_069/0009855: Elektrotechnické technologie s vysokým podílem vestavěné inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (IEEE UEMCON)
ISBN
978-1-66540-690-1
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
0030-0034
Název nakladatele
IEEE
Místo vydání
Piscaway
Místo konání akce
virtual, New York, USA
Datum konání akce
1. 12. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—