Deep learning techniques for model reference adaptive control and identification of complex systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F20%3A43960415" target="_blank" >RIV/49777513:23220/20:43960415 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9286698" target="_blank" >https://ieeexplore.ieee.org/document/9286698</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ME49197.2020.9286698" target="_blank" >10.1109/ME49197.2020.9286698</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep learning techniques for model reference adaptive control and identification of complex systems
Popis výsledku v původním jazyce
Although many mathematical and analytical techniques have been presented to control and identify the dynamic systems, there are vast fields of research needing to be developed and extended through Deep Learning (DL) approaches. In this paper, we try to describe how intelligent controllers can interact under control systems in a unique DL-based package. Despite the fact that conventional techniques have some advantages, such as the appropriate reliability and simple implementation for industrial goals, intelligent methods have potential to solve complex problems and identify nonlinear systems. Hence the concentration of this research is on the use of DL techniques to improve the system identification and control in model reference adaptive controllers. A dataset is also used to validate the responses of the proposed techniques. The simulation results demonstrate that not only are the proposed methods consistently appropriate to control the complex systems but also they have acceptable responses in order to utilize for system identification.
Název v anglickém jazyce
Deep learning techniques for model reference adaptive control and identification of complex systems
Popis výsledku anglicky
Although many mathematical and analytical techniques have been presented to control and identify the dynamic systems, there are vast fields of research needing to be developed and extended through Deep Learning (DL) approaches. In this paper, we try to describe how intelligent controllers can interact under control systems in a unique DL-based package. Despite the fact that conventional techniques have some advantages, such as the appropriate reliability and simple implementation for industrial goals, intelligent methods have potential to solve complex problems and identify nonlinear systems. Hence the concentration of this research is on the use of DL techniques to improve the system identification and control in model reference adaptive controllers. A dataset is also used to validate the responses of the proposed techniques. The simulation results demonstrate that not only are the proposed methods consistently appropriate to control the complex systems but also they have acceptable responses in order to utilize for system identification.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_069%2F0009855" target="_blank" >EF18_069/0009855: Elektrotechnické technologie s vysokým podílem vestavěné inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2020 19th International Conference on Mechatronics - Mechatronika (ME 2020)
ISBN
978-1-72815-602-6
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
147-153
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
on-line, Prague, Czech Republic
Datum konání akce
2. 12. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000662155700027