Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Detection and segmentation of retinal lesions in RetCam 3 images based on active contours driven by statisticaly local features

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00843989%3A_____%2F19%3AE0107863" target="_blank" >RIV/00843989:_____/19:E0107863 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://advances.utc.sk/index.php/AEEE/article/view/3045/488488572" target="_blank" >http://advances.utc.sk/index.php/AEEE/article/view/3045/488488572</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15598/aeee.v17i2.3045" target="_blank" >10.15598/aeee.v17i2.3045</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Detection and segmentation of retinal lesions in RetCam 3 images based on active contours driven by statisticaly local features

  • Popis výsledku v původním jazyce

    Clinical retinal image analysis is an import aspect of clinical diagnosis in ophthalmology. Retinopathy of Prematurity (ROP) represents one of the most severe retinal disorders in prematurely born infants. One of the ROP clinical signs is the presence of retinal lesions endangering the vision system. Unfortunately, the stage and progress of these findings is often only subjectively estimated. A procedure such as this is undoubtedly linked to subjective inaccuracies depending on the experience of the ophthalmologist. In our study, a fully autonomous segmentation algorithm to model retinal lesions found using RetCam 3 is proposed. The proposed method used a combination of retinal image preprocessing and active contours for retinal lesion segmentation. Based on this procedure, a binary model of retinal lesions that allowed retinal lesions to be classified from a retinal image background was obtained. Another important aspect of the model was feature extraction. These features reliably and automatically described the development stage of an individual lesion. A complex procedure such as this has significant implications for ophthalmic clinical practice in substituting manual clinical procedures and improving the accuracy of routine clinical decisions.

  • Název v anglickém jazyce

    Detection and segmentation of retinal lesions in RetCam 3 images based on active contours driven by statisticaly local features

  • Popis výsledku anglicky

    Clinical retinal image analysis is an import aspect of clinical diagnosis in ophthalmology. Retinopathy of Prematurity (ROP) represents one of the most severe retinal disorders in prematurely born infants. One of the ROP clinical signs is the presence of retinal lesions endangering the vision system. Unfortunately, the stage and progress of these findings is often only subjectively estimated. A procedure such as this is undoubtedly linked to subjective inaccuracies depending on the experience of the ophthalmologist. In our study, a fully autonomous segmentation algorithm to model retinal lesions found using RetCam 3 is proposed. The proposed method used a combination of retinal image preprocessing and active contours for retinal lesion segmentation. Based on this procedure, a binary model of retinal lesions that allowed retinal lesions to be classified from a retinal image background was obtained. Another important aspect of the model was feature extraction. These features reliably and automatically described the development stage of an individual lesion. A complex procedure such as this has significant implications for ophthalmic clinical practice in substituting manual clinical procedures and improving the accuracy of routine clinical decisions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in electrical and electronic engineering

  • ISSN

    1336-1376

  • e-ISSN

    1804-3119

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    8

  • Strana od-do

    194-201

  • Kód UT WoS článku

    000472599800012

  • EID výsledku v databázi Scopus

    2-s2.0-85068460064