Detection and segmentation of retinal lesions in RetCam 3 images based on active contours driven by statisticaly local features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00843989%3A_____%2F19%3AE0107863" target="_blank" >RIV/00843989:_____/19:E0107863 - isvavai.cz</a>
Výsledek na webu
<a href="http://advances.utc.sk/index.php/AEEE/article/view/3045/488488572" target="_blank" >http://advances.utc.sk/index.php/AEEE/article/view/3045/488488572</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15598/aeee.v17i2.3045" target="_blank" >10.15598/aeee.v17i2.3045</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection and segmentation of retinal lesions in RetCam 3 images based on active contours driven by statisticaly local features
Popis výsledku v původním jazyce
Clinical retinal image analysis is an import aspect of clinical diagnosis in ophthalmology. Retinopathy of Prematurity (ROP) represents one of the most severe retinal disorders in prematurely born infants. One of the ROP clinical signs is the presence of retinal lesions endangering the vision system. Unfortunately, the stage and progress of these findings is often only subjectively estimated. A procedure such as this is undoubtedly linked to subjective inaccuracies depending on the experience of the ophthalmologist. In our study, a fully autonomous segmentation algorithm to model retinal lesions found using RetCam 3 is proposed. The proposed method used a combination of retinal image preprocessing and active contours for retinal lesion segmentation. Based on this procedure, a binary model of retinal lesions that allowed retinal lesions to be classified from a retinal image background was obtained. Another important aspect of the model was feature extraction. These features reliably and automatically described the development stage of an individual lesion. A complex procedure such as this has significant implications for ophthalmic clinical practice in substituting manual clinical procedures and improving the accuracy of routine clinical decisions.
Název v anglickém jazyce
Detection and segmentation of retinal lesions in RetCam 3 images based on active contours driven by statisticaly local features
Popis výsledku anglicky
Clinical retinal image analysis is an import aspect of clinical diagnosis in ophthalmology. Retinopathy of Prematurity (ROP) represents one of the most severe retinal disorders in prematurely born infants. One of the ROP clinical signs is the presence of retinal lesions endangering the vision system. Unfortunately, the stage and progress of these findings is often only subjectively estimated. A procedure such as this is undoubtedly linked to subjective inaccuracies depending on the experience of the ophthalmologist. In our study, a fully autonomous segmentation algorithm to model retinal lesions found using RetCam 3 is proposed. The proposed method used a combination of retinal image preprocessing and active contours for retinal lesion segmentation. Based on this procedure, a binary model of retinal lesions that allowed retinal lesions to be classified from a retinal image background was obtained. Another important aspect of the model was feature extraction. These features reliably and automatically described the development stage of an individual lesion. A complex procedure such as this has significant implications for ophthalmic clinical practice in substituting manual clinical procedures and improving the accuracy of routine clinical decisions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in electrical and electronic engineering
ISSN
1336-1376
e-ISSN
1804-3119
Svazek periodika
17
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
194-201
Kód UT WoS článku
000472599800012
EID výsledku v databázi Scopus
2-s2.0-85068460064