A Semi-Supervised Learning Approach for Automatic Segmentation of Retinal Lesions Using SURF Blob Detector and Locally Adaptive Binarization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242726" target="_blank" >RIV/61989100:27240/19:10242726 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62690094:18450/19:50015949 RIV/00843989:_____/19:E0107979
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-14802-7_27" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-14802-7_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-14802-7_27" target="_blank" >10.1007/978-3-030-14802-7_27</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Semi-Supervised Learning Approach for Automatic Segmentation of Retinal Lesions Using SURF Blob Detector and Locally Adaptive Binarization
Popis výsledku v původním jazyce
In the clinical ophthalmology, the retinal area is routinely investigated from the retinal images, by the naked eyes. Such subjective assessment may be apparently influenced by ineligible inaccuracies. Therefore, objective assessment of the retinal image records plays an important role for the clinical evaluation and treatment planning. Retinal lesions in premature born children represent one of the most frequent retinal findings which may endanger their vison. These findings are mostly connected with the Retinopathy of Prematurity (RoP). In this paper, we have proposed a novel segmentation model utilizing the SURF blob detector and locally adaptive binarization. The proposed model is able to autonomously detect, and consequently classify retinal lesions. In the result, we obtain a segmentation model of the retinal lesions, where the retinal posterior is effectively separated. As a part of the proposed analysis, we have done objectification and quantitative comparison of the proposed method against some of the state of the art segmentation models by selected evaluating parameters. The proposed method has a potential to be used in the clinical practice as a feedback for the automatic evaluation of the retinal lesions, and also for dynamic retinal lesion's features extraction. (C) 2019, Springer Nature Switzerland AG.
Název v anglickém jazyce
A Semi-Supervised Learning Approach for Automatic Segmentation of Retinal Lesions Using SURF Blob Detector and Locally Adaptive Binarization
Popis výsledku anglicky
In the clinical ophthalmology, the retinal area is routinely investigated from the retinal images, by the naked eyes. Such subjective assessment may be apparently influenced by ineligible inaccuracies. Therefore, objective assessment of the retinal image records plays an important role for the clinical evaluation and treatment planning. Retinal lesions in premature born children represent one of the most frequent retinal findings which may endanger their vison. These findings are mostly connected with the Retinopathy of Prematurity (RoP). In this paper, we have proposed a novel segmentation model utilizing the SURF blob detector and locally adaptive binarization. The proposed model is able to autonomously detect, and consequently classify retinal lesions. In the result, we obtain a segmentation model of the retinal lesions, where the retinal posterior is effectively separated. As a part of the proposed analysis, we have done objectification and quantitative comparison of the proposed method against some of the state of the art segmentation models by selected evaluating parameters. The proposed method has a potential to be used in the clinical practice as a feedback for the automatic evaluation of the retinal lesions, and also for dynamic retinal lesion's features extraction. (C) 2019, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 11432
ISBN
978-3-030-14801-0
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
13
Strana od-do
311-323
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Jogdžakarta
Datum konání akce
8. 4. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000493319700026