Fully automated imaging protocol independent system for pituitary adenoma segmentation: a convolutional neural network - based model on sparsely annotated MRI
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00843989%3A_____%2F23%3AE0110263" target="_blank" >RIV/00843989:_____/23:E0110263 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61383082:_____/23:00001305 RIV/68407700:21230/23:00366749 RIV/61988987:17110/23:A2402O0Q RIV/00216208:11110/23:10465399 RIV/00216208:11120/23:43925986
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10143-023-02014-3" target="_blank" >https://link.springer.com/article/10.1007/s10143-023-02014-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10143-023-02014-3" target="_blank" >10.1007/s10143-023-02014-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fully automated imaging protocol independent system for pituitary adenoma segmentation: a convolutional neural network - based model on sparsely annotated MRI
Popis výsledku v původním jazyce
This study aims to develop a fully automated imaging protocol independent system for pituitary adenoma segmentation from magnetic resonance imaging (MRI) scans that can work without user interaction and evaluate its accuracy and utility for clinical applications. We trained two independent artificial neural networks on MRI scans of 394 patients. The scans were acquired according to various imaging protocols over the course of 11 years on 1.5T and 3T MRI systems. The segmentation model assigned a class label to each input pixel (pituitary adenoma, internal carotid artery, normal pituitary gland, background). The slice segmentation model classified slices as clinically relevant (structures of interest in slice) or irrelevant (anterior or posterior to sella turcica). We used MRI data of another 99 patients to evaluate the performance of the model during training. We validated the model on a prospective cohort of 28 patients, Dice coefficients of 0.910, 0.719, and 0.240 for tumour, internal carotid artery, and normal gland labels, respectively, were achieved. The slice selection model achieved 82.5% accuracy, 88.7% sensitivity, 76.7% specificity, and an AUC of 0.904. A human expert rated 71.4% of the segmentation results as accurate, 21.4% as slightly inaccurate, and 7.1% as coarsely inaccurate. Our model achieved good results comparable with recent works of other authors on the largest dataset to date and generalized well for various imaging protocols. We discussed future clinical applications, and their considerations. Models and frameworks for clinical use have yet to be developed and evaluated.
Název v anglickém jazyce
Fully automated imaging protocol independent system for pituitary adenoma segmentation: a convolutional neural network - based model on sparsely annotated MRI
Popis výsledku anglicky
This study aims to develop a fully automated imaging protocol independent system for pituitary adenoma segmentation from magnetic resonance imaging (MRI) scans that can work without user interaction and evaluate its accuracy and utility for clinical applications. We trained two independent artificial neural networks on MRI scans of 394 patients. The scans were acquired according to various imaging protocols over the course of 11 years on 1.5T and 3T MRI systems. The segmentation model assigned a class label to each input pixel (pituitary adenoma, internal carotid artery, normal pituitary gland, background). The slice segmentation model classified slices as clinically relevant (structures of interest in slice) or irrelevant (anterior or posterior to sella turcica). We used MRI data of another 99 patients to evaluate the performance of the model during training. We validated the model on a prospective cohort of 28 patients, Dice coefficients of 0.910, 0.719, and 0.240 for tumour, internal carotid artery, and normal gland labels, respectively, were achieved. The slice selection model achieved 82.5% accuracy, 88.7% sensitivity, 76.7% specificity, and an AUC of 0.904. A human expert rated 71.4% of the segmentation results as accurate, 21.4% as slightly inaccurate, and 7.1% as coarsely inaccurate. Our model achieved good results comparable with recent works of other authors on the largest dataset to date and generalized well for various imaging protocols. We discussed future clinical applications, and their considerations. Models and frameworks for clinical use have yet to be developed and evaluated.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30224 - Radiology, nuclear medicine and medical imaging
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neurosurgical review
ISSN
0344-5607
e-ISSN
1437-2320
Svazek periodika
46
Číslo periodika v rámci svazku
article 116
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000985819900001
EID výsledku v databázi Scopus
2-s2.0-85158846436