Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Precision meets generalization: Enhancing brain tumor classification via pretrained DenseNet with global average pooling and hyperparameter tuning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256803" target="_blank" >RIV/61989100:27240/24:10256803 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307825" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307825</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0307825" target="_blank" >10.1371/journal.pone.0307825</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Precision meets generalization: Enhancing brain tumor classification via pretrained DenseNet with global average pooling and hyperparameter tuning

  • Popis výsledku v původním jazyce

    Brain tumors pose significant global health concerns due to their high mortality rates and limited treatment options. These tumors, arising from abnormal cell growth within the brain, exhibits various sizes and shapes, making their manual detection from magnetic resonance imaging (MRI) scans a subjective and challenging task for healthcare professionals, hence necessitating automated solutions. This study investigates the potential of deep learning, specifically the DenseNet architecture, to automate brain tumor classification, aiming to enhance accuracy and generalizability for clinical applications. We utilized the Figshare brain tumor dataset, comprising 3,064 T1-weighted contrast-enhanced MRI images from 233 patients with three prevalent tumor types: meningioma, glioma, and pituitary tumor. Four pre-trained deep learning models-ResNet, EfficientNet, MobileNet, and DenseNet-were evaluated using transfer learning from ImageNet. DenseNet achieved the highest test set accuracy of 96%, outperforming ResNet (91%), EfficientNet (91%), and MobileNet (93%). Therefore, we focused on improving the performance of the DenseNet, while considering it as base model. To enhance the generalizability of the base DenseNet model, we implemented a fine-tuning approach with regularization techniques, including data augmentation, dropout, batch normalization, and global average pooling, coupled with hyperparameter optimization. This enhanced DenseNet model achieved an accuracy of 97.1%. Our findings demonstrate the effectiveness of DenseNet with transfer learning and fine-tuning for brain tumor classification, highlighting its potential to improve diagnostic accuracy and reliability in clinical settings.

  • Název v anglickém jazyce

    Precision meets generalization: Enhancing brain tumor classification via pretrained DenseNet with global average pooling and hyperparameter tuning

  • Popis výsledku anglicky

    Brain tumors pose significant global health concerns due to their high mortality rates and limited treatment options. These tumors, arising from abnormal cell growth within the brain, exhibits various sizes and shapes, making their manual detection from magnetic resonance imaging (MRI) scans a subjective and challenging task for healthcare professionals, hence necessitating automated solutions. This study investigates the potential of deep learning, specifically the DenseNet architecture, to automate brain tumor classification, aiming to enhance accuracy and generalizability for clinical applications. We utilized the Figshare brain tumor dataset, comprising 3,064 T1-weighted contrast-enhanced MRI images from 233 patients with three prevalent tumor types: meningioma, glioma, and pituitary tumor. Four pre-trained deep learning models-ResNet, EfficientNet, MobileNet, and DenseNet-were evaluated using transfer learning from ImageNet. DenseNet achieved the highest test set accuracy of 96%, outperforming ResNet (91%), EfficientNet (91%), and MobileNet (93%). Therefore, we focused on improving the performance of the DenseNet, while considering it as base model. To enhance the generalizability of the base DenseNet model, we implemented a fine-tuning approach with regularization techniques, including data augmentation, dropout, batch normalization, and global average pooling, coupled with hyperparameter optimization. This enhanced DenseNet model achieved an accuracy of 97.1%. Our findings demonstrate the effectiveness of DenseNet with transfer learning and fine-tuning for brain tumor classification, highlighting its potential to improve diagnostic accuracy and reliability in clinical settings.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PLoS One

  • ISSN

    1932-6203

  • e-ISSN

    1932-6203

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

  • Kód UT WoS článku

    001326653200061

  • EID výsledku v databázi Scopus