Gated Deep Reinforcement Learning With Red Deer Optimization for Medical Image Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10253238" target="_blank" >RIV/61989100:27230/23:10253238 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10145063" target="_blank" >https://ieeexplore.ieee.org/document/10145063</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3281546" target="_blank" >10.1109/ACCESS.2023.3281546</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gated Deep Reinforcement Learning With Red Deer Optimization for Medical Image Classification
Popis výsledku v původním jazyce
One of the most complex areas of image processing is image classification, which is heavily relied upon in clinical care and educational activities. However, conventional models have reached their limits in effectiveness and require extensive time and effort to extract and choose classification variables. In addition, the large volume of medical image data being produced makes manual procedures ineffective and prone to errors. Deep learning has shown promise for many classification problems. In this study, a deep learning-based classification model is developed to decrease misclassifications and handle large amounts of data. The Adaptive Guided Bilateral Filter is used to filter images, and texture and edge attributes are gathered using the Spectral Gabor Wavelet Transform. The Black Widow Optimization method is used to choose the best features, which are then input into the Red Deer Optimization-enhanced Gated Deep Reinforcement Learning network model for classification. The brain tumor MRI dataset was used to test the model on the MATLAB platform, and the results showed an accuracy of 98.8%.
Název v anglickém jazyce
Gated Deep Reinforcement Learning With Red Deer Optimization for Medical Image Classification
Popis výsledku anglicky
One of the most complex areas of image processing is image classification, which is heavily relied upon in clinical care and educational activities. However, conventional models have reached their limits in effectiveness and require extensive time and effort to extract and choose classification variables. In addition, the large volume of medical image data being produced makes manual procedures ineffective and prone to errors. Deep learning has shown promise for many classification problems. In this study, a deep learning-based classification model is developed to decrease misclassifications and handle large amounts of data. The Adaptive Guided Bilateral Filter is used to filter images, and texture and edge attributes are gathered using the Spectral Gabor Wavelet Transform. The Black Widow Optimization method is used to choose the best features, which are then input into the Red Deer Optimization-enhanced Gated Deep Reinforcement Learning network model for classification. The brain tumor MRI dataset was used to test the model on the MATLAB platform, and the results showed an accuracy of 98.8%.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
58982-58993
Kód UT WoS článku
001017320600001
EID výsledku v databázi Scopus
2-s2.0-85161612733