A Novel Aerial Dataset for Scene Classification Annotated Using OSM for Learning Deep CNNs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00322143" target="_blank" >RIV/68407700:21230/18:00322143 - isvavai.cz</a>
Výsledek na webu
<a href="http://radio.feld.cvut.cz/conf/poster/proceedings/Poster_2018/Section_IC/IC_045_Kunc.pdf" target="_blank" >http://radio.feld.cvut.cz/conf/poster/proceedings/Poster_2018/Section_IC/IC_045_Kunc.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Novel Aerial Dataset for Scene Classification Annotated Using OSM for Learning Deep CNNs
Popis výsledku v původním jazyce
Remote sensing data are getting cheaper and thus tools allowing analysis of large quantities of the data are needed. One of the commonly used tools for automation of remote sensing data are neural networks. However, despite the rising availability of the data, there is no suitable dataset for learning neural networks. This paper introduces novel aerial image datasets that were automatically annotated using labels from OpenStreetMap. The largest of the datasets contains 52,596 400x400 px images divided into 44 classes. These datasets were used for learning a deep state-of-the-art neural network for image classification as the size of the datasets allows to learn such network from scratch which was difficult with currently available datasets. The classification performance of the neural networks represents the baseline performance for the presented datasets and was further analyzed using the gradCAM visualization method.
Název v anglickém jazyce
A Novel Aerial Dataset for Scene Classification Annotated Using OSM for Learning Deep CNNs
Popis výsledku anglicky
Remote sensing data are getting cheaper and thus tools allowing analysis of large quantities of the data are needed. One of the commonly used tools for automation of remote sensing data are neural networks. However, despite the rising availability of the data, there is no suitable dataset for learning neural networks. This paper introduces novel aerial image datasets that were automatically annotated using labels from OpenStreetMap. The largest of the datasets contains 52,596 400x400 px images divided into 44 classes. These datasets were used for learning a deep state-of-the-art neural network for image classification as the size of the datasets allows to learn such network from scratch which was difficult with currently available datasets. The classification performance of the neural networks represents the baseline performance for the presented datasets and was further analyzed using the gradCAM visualization method.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Student Scientific Conference Poster – 22/2018
ISBN
978-80-01-06428-3
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
Czech Technical University in Prague
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
10. 5. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—