Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

No-Reference Image Quality Assessment Using Meta-Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020689" target="_blank" >RIV/62690094:18450/23:50020689 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-981-99-2680-0_13" target="_blank" >http://dx.doi.org/10.1007/978-981-99-2680-0_13</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-99-2680-0_13" target="_blank" >10.1007/978-981-99-2680-0_13</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    No-Reference Image Quality Assessment Using Meta-Learning

  • Popis výsledku v původním jazyce

    Deep learning-based no-reference image quality assessment faces problems like dependency on a large amount of experimental data and the generalization ability of the learned model. A deep learning model trained on a specific dataset cannot obtain the desired results for testing on other datasets. Similarly, a deep learning model trained with small experiment data does not provide the best result. This paper addresses these problems of the deep learning model using the meta-learning approach in the field of no-reference Image Quality Assessment. The no-reference image quality assessment is a small sample problem, where the amount of experimental data is very less. Although data augmentation techniques have been used to increase the amount of experimental data, they do not increase the variation of the data. Therefore, traditional deep learning-based techniques are unsuitable for no-reference image quality assessment. Another problem is the lack of generalization ability. A deep learning model trained with image quality datasets containing images distorted synthetically cannot efficiently assess the quality of images distorted naturally. This work proposes a meta-learning model that can be trained with more than one image quality dataset, where one image quality assessment dataset contains synthetic images and the other contains real images. Finally, another image quality assessment dataset has tested the trained model. The test result is better than the state-of-the-art methods, and the results establish the fact that the meta-learning model proposed in this paper tries to resolve the problems of the deep learning model. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

  • Název v anglickém jazyce

    No-Reference Image Quality Assessment Using Meta-Learning

  • Popis výsledku anglicky

    Deep learning-based no-reference image quality assessment faces problems like dependency on a large amount of experimental data and the generalization ability of the learned model. A deep learning model trained on a specific dataset cannot obtain the desired results for testing on other datasets. Similarly, a deep learning model trained with small experiment data does not provide the best result. This paper addresses these problems of the deep learning model using the meta-learning approach in the field of no-reference Image Quality Assessment. The no-reference image quality assessment is a small sample problem, where the amount of experimental data is very less. Although data augmentation techniques have been used to increase the amount of experimental data, they do not increase the variation of the data. Therefore, traditional deep learning-based techniques are unsuitable for no-reference image quality assessment. Another problem is the lack of generalization ability. A deep learning model trained with image quality datasets containing images distorted synthetically cannot efficiently assess the quality of images distorted naturally. This work proposes a meta-learning model that can be trained with more than one image quality dataset, where one image quality assessment dataset contains synthetic images and the other contains real images. Finally, another image quality assessment dataset has tested the trained model. The test result is better than the state-of-the-art methods, and the results establish the fact that the meta-learning model proposed in this paper tries to resolve the problems of the deep learning model. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Networks and Systems

  • ISBN

    978-981-9926-79-4

  • ISSN

    2367-3370

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    137-144

  • Název nakladatele

    Springer Science and Business Media Deutschland GmbH

  • Místo vydání

    Singapur

  • Místo konání akce

    Ropar

  • Datum konání akce

    19. 12. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku