No-Reference Image Quality Assessment Using Meta-Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020689" target="_blank" >RIV/62690094:18450/23:50020689 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-981-99-2680-0_13" target="_blank" >http://dx.doi.org/10.1007/978-981-99-2680-0_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-99-2680-0_13" target="_blank" >10.1007/978-981-99-2680-0_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
No-Reference Image Quality Assessment Using Meta-Learning
Popis výsledku v původním jazyce
Deep learning-based no-reference image quality assessment faces problems like dependency on a large amount of experimental data and the generalization ability of the learned model. A deep learning model trained on a specific dataset cannot obtain the desired results for testing on other datasets. Similarly, a deep learning model trained with small experiment data does not provide the best result. This paper addresses these problems of the deep learning model using the meta-learning approach in the field of no-reference Image Quality Assessment. The no-reference image quality assessment is a small sample problem, where the amount of experimental data is very less. Although data augmentation techniques have been used to increase the amount of experimental data, they do not increase the variation of the data. Therefore, traditional deep learning-based techniques are unsuitable for no-reference image quality assessment. Another problem is the lack of generalization ability. A deep learning model trained with image quality datasets containing images distorted synthetically cannot efficiently assess the quality of images distorted naturally. This work proposes a meta-learning model that can be trained with more than one image quality dataset, where one image quality assessment dataset contains synthetic images and the other contains real images. Finally, another image quality assessment dataset has tested the trained model. The test result is better than the state-of-the-art methods, and the results establish the fact that the meta-learning model proposed in this paper tries to resolve the problems of the deep learning model. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Název v anglickém jazyce
No-Reference Image Quality Assessment Using Meta-Learning
Popis výsledku anglicky
Deep learning-based no-reference image quality assessment faces problems like dependency on a large amount of experimental data and the generalization ability of the learned model. A deep learning model trained on a specific dataset cannot obtain the desired results for testing on other datasets. Similarly, a deep learning model trained with small experiment data does not provide the best result. This paper addresses these problems of the deep learning model using the meta-learning approach in the field of no-reference Image Quality Assessment. The no-reference image quality assessment is a small sample problem, where the amount of experimental data is very less. Although data augmentation techniques have been used to increase the amount of experimental data, they do not increase the variation of the data. Therefore, traditional deep learning-based techniques are unsuitable for no-reference image quality assessment. Another problem is the lack of generalization ability. A deep learning model trained with image quality datasets containing images distorted synthetically cannot efficiently assess the quality of images distorted naturally. This work proposes a meta-learning model that can be trained with more than one image quality dataset, where one image quality assessment dataset contains synthetic images and the other contains real images. Finally, another image quality assessment dataset has tested the trained model. The test result is better than the state-of-the-art methods, and the results establish the fact that the meta-learning model proposed in this paper tries to resolve the problems of the deep learning model. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems
ISBN
978-981-9926-79-4
ISSN
2367-3370
e-ISSN
—
Počet stran výsledku
8
Strana od-do
137-144
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Singapur
Místo konání akce
Ropar
Datum konání akce
19. 12. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—