Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Extreme Learning Bat Algorithm in Brain Tumor Classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019407" target="_blank" >RIV/62690094:18470/22:50019407 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.techscience.com/iasc/v34n1/47351" target="_blank" >https://www.techscience.com/iasc/v34n1/47351</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.32604/iasc.2022.024538" target="_blank" >10.32604/iasc.2022.024538</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Extreme Learning Bat Algorithm in Brain Tumor Classification

  • Popis výsledku v původním jazyce

    Brain tumor is considered as an unusual cell that presents and grows in the brain. Similarly, it may lead to cancerous or non-cancerous. So, to improve the survival rate of the patient and to give the best treatment at the earliest, it&apos;s very necessary for early prediction of tumor. Accurate classification of tumor in the brain is important for improving the diagnosis. In accordance with that, various research programs are invited for the better treatment of the patients. Machine Learning (ML) algorithms are applied to help the health associates for the classification of brain tumor and present their diagnosis. This paper focuses primarily on brain tumors of meningioma, Glioma, and pituitary. Moreover, the manual evaluation of Magnetic Resonance Image (MRI) is a difficult process. For accessing MRI brain image in the aspects of its volume, boundaries, detecting tumor size, shape and classification are the challenging tasks. To overcome these difficulties, this paper proposes a novel approach in feature selection using bat algorithm with Extreme Learning Machine (ELM) and for enhancing the accurate classification by Transfer Learning (BA + ELM-TL). Here the data is pre-processed to remove noises; Stationary Wavelet Transforms (SWT) is used to extract the features from the MRI brain image. This paper has collected the dataset from fig share, whole brain atlas and TCGA-GBM data set. Therefore, it is proved that 92.6% is the accuracy of Bat algorithm, 90.4% for Extreme Learning algorithm and 98.87% for BA + ELM-TL.

  • Název v anglickém jazyce

    Extreme Learning Bat Algorithm in Brain Tumor Classification

  • Popis výsledku anglicky

    Brain tumor is considered as an unusual cell that presents and grows in the brain. Similarly, it may lead to cancerous or non-cancerous. So, to improve the survival rate of the patient and to give the best treatment at the earliest, it&apos;s very necessary for early prediction of tumor. Accurate classification of tumor in the brain is important for improving the diagnosis. In accordance with that, various research programs are invited for the better treatment of the patients. Machine Learning (ML) algorithms are applied to help the health associates for the classification of brain tumor and present their diagnosis. This paper focuses primarily on brain tumors of meningioma, Glioma, and pituitary. Moreover, the manual evaluation of Magnetic Resonance Image (MRI) is a difficult process. For accessing MRI brain image in the aspects of its volume, boundaries, detecting tumor size, shape and classification are the challenging tasks. To overcome these difficulties, this paper proposes a novel approach in feature selection using bat algorithm with Extreme Learning Machine (ELM) and for enhancing the accurate classification by Transfer Learning (BA + ELM-TL). Here the data is pre-processed to remove noises; Stationary Wavelet Transforms (SWT) is used to extract the features from the MRI brain image. This paper has collected the dataset from fig share, whole brain atlas and TCGA-GBM data set. Therefore, it is proved that 92.6% is the accuracy of Bat algorithm, 90.4% for Extreme Learning algorithm and 98.87% for BA + ELM-TL.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Intelligent Automation &amp; Soft Computing: An International Journal

  • ISSN

    1079-8587

  • e-ISSN

    2326-005X

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    249-265

  • Kód UT WoS článku

    000791404800002

  • EID výsledku v databázi Scopus

    2-s2.0-85129091151