Bioimpedance measurement: a non-invasive diagnosis of limb compartment syndrome
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00843989%3A_____%2F24%3AE0111112" target="_blank" >RIV/00843989:_____/24:E0111112 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61988987:17110/24:A25038D0 RIV/61989100:27240/24:10257241
Výsledek na webu
<a href="https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2024.1433284/full" target="_blank" >https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2024.1433284/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fbioe.2024.1433284" target="_blank" >10.3389/fbioe.2024.1433284</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bioimpedance measurement: a non-invasive diagnosis of limb compartment syndrome
Popis výsledku v původním jazyce
Introduction: The methods for diagnosing compartment syndrome non-invasively remain under debate. Bioimpedance measurements offer a promising avenue in clinical practice, detecting subtle changes in organ impedance due to volume shifts. This study explores bioimpedance measurement as a novel, painless method for diagnosing compartment syndrome, potentially enabling continuous monitoring. Objective: This work aims to develop a prototype device for non-invasive diagnosis of compartment syndrome based on bioimpedance changes and assess initial results through in vitro experiments on inanimate biological material. We assume a change in the bioimpedance value after the application of physiological solution. Materials and methods: Between 2018 and 2022, a prototype device for diagnosing limb compartment syndrome was collaboratively developed with the Department of Cybernetics and Biomedical Engineering at the Technical University of Ostrava, Czech Republic. This device operates by comparing bioimpedance between two compartments, one of which is pathologically affected (experiencing compartment syndrome). The Bioimpedance Analyzer for Compartment Syndrome (BACS) has been utilized to conduct measurements on inanimate biological material in laboratory settings. Two samples of duck and chicken tissue, as well as piglets, were employed for these experiments. According to the size of sample was compartment syndrome simulated by injecting 20-120 mL saline into one limb (breast) while leaving the other as a control. Invasive intramuscular pressure measurements were conducted post-saline injection using a conventional device (Stryker). Changes in bioimpedance were evaluated following saline application. Results: The non-invasive bioimpedance measurement instrument has been developed. It meets the safety requirements of European standard EN 60601-1. Measurement of accuracy showed minimal deviation for both channels (1.08% for the left channel and 1.84% for the right channel) whe...
Název v anglickém jazyce
Bioimpedance measurement: a non-invasive diagnosis of limb compartment syndrome
Popis výsledku anglicky
Introduction: The methods for diagnosing compartment syndrome non-invasively remain under debate. Bioimpedance measurements offer a promising avenue in clinical practice, detecting subtle changes in organ impedance due to volume shifts. This study explores bioimpedance measurement as a novel, painless method for diagnosing compartment syndrome, potentially enabling continuous monitoring. Objective: This work aims to develop a prototype device for non-invasive diagnosis of compartment syndrome based on bioimpedance changes and assess initial results through in vitro experiments on inanimate biological material. We assume a change in the bioimpedance value after the application of physiological solution. Materials and methods: Between 2018 and 2022, a prototype device for diagnosing limb compartment syndrome was collaboratively developed with the Department of Cybernetics and Biomedical Engineering at the Technical University of Ostrava, Czech Republic. This device operates by comparing bioimpedance between two compartments, one of which is pathologically affected (experiencing compartment syndrome). The Bioimpedance Analyzer for Compartment Syndrome (BACS) has been utilized to conduct measurements on inanimate biological material in laboratory settings. Two samples of duck and chicken tissue, as well as piglets, were employed for these experiments. According to the size of sample was compartment syndrome simulated by injecting 20-120 mL saline into one limb (breast) while leaving the other as a control. Invasive intramuscular pressure measurements were conducted post-saline injection using a conventional device (Stryker). Changes in bioimpedance were evaluated following saline application. Results: The non-invasive bioimpedance measurement instrument has been developed. It meets the safety requirements of European standard EN 60601-1. Measurement of accuracy showed minimal deviation for both channels (1.08% for the left channel and 1.84% for the right channel) whe...
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30400 - Medical biotechnology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in bioengineering and biotechnology
ISSN
2296-4185
e-ISSN
2296-4185
Svazek periodika
12
Číslo periodika v rámci svazku
article 1433284
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
001306034600001
EID výsledku v databázi Scopus
2-s2.0-85203455728