En Route for Infinity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F01801376%3A_____%2F17%3AN0000003" target="_blank" >RIV/01801376:_____/17:N0000003 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61384399:31140/17:00051307
Výsledek na webu
<a href="https://msed.vse.cz/msed_2017/article/37-Coufal-Jan-paper.pdf" target="_blank" >https://msed.vse.cz/msed_2017/article/37-Coufal-Jan-paper.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
En Route for Infinity
Popis výsledku v původním jazyce
This paper presents the birth and development of the term “infinity” in mathematics and in philosophy. Infinity is an abstract concept describing something without any bound or larger than any number. Ancient cultures had various ideas about the nature of infinity. The route for infinity goes from Sumer in the 4th millennium B. C. via Greece (Pythagoras, Aristotle, Euclid – the Ancient Greeks did not define infinity in precise formalism as does modern mathematics, and instead approached infinity as a philosophical concept) to the 19th century Prague (Bolzano), Braunshweig (Dedekind) and Halle (Georg Cantor formalized many ideas related to infinity and infinite sets during the late 19th and early 20th centuries). The article ends in 1900 Paris, at the Second International Congress of Mathematicians, where David Hilbert announced his famous list of 23 unsolved mathematical problems, now known as “Hilbert’s problems” and in 1904 Heidelberg in the Third International Congress of Mathematicians, where Gyula Kőnig delivered a lecture where he claimed that Cantor’s famous continuum hypothesis was false. An error in Kőnig’s proof was discovered by Ernst Zermelo soon thereafter.
Název v anglickém jazyce
En Route for Infinity
Popis výsledku anglicky
This paper presents the birth and development of the term “infinity” in mathematics and in philosophy. Infinity is an abstract concept describing something without any bound or larger than any number. Ancient cultures had various ideas about the nature of infinity. The route for infinity goes from Sumer in the 4th millennium B. C. via Greece (Pythagoras, Aristotle, Euclid – the Ancient Greeks did not define infinity in precise formalism as does modern mathematics, and instead approached infinity as a philosophical concept) to the 19th century Prague (Bolzano), Braunshweig (Dedekind) and Halle (Georg Cantor formalized many ideas related to infinity and infinite sets during the late 19th and early 20th centuries). The article ends in 1900 Paris, at the Second International Congress of Mathematicians, where David Hilbert announced his famous list of 23 unsolved mathematical problems, now known as “Hilbert’s problems” and in 1904 Heidelberg in the Third International Congress of Mathematicians, where Gyula Kőnig delivered a lecture where he claimed that Cantor’s famous continuum hypothesis was false. An error in Kőnig’s proof was discovered by Ernst Zermelo soon thereafter.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 11th International Days of Statistics and Economics (MSED 2017)
ISBN
978-80-87990-12-4
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
235-244
Název nakladatele
Libuše Macáková, Melandrium
Místo vydání
Slaný
Místo konání akce
Praha
Datum konání akce
14. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—