PREHISTORY OF THE INFINITESIMAL CALCULUS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F01801376%3A_____%2F18%3AN0000017" target="_blank" >RIV/01801376:_____/18:N0000017 - isvavai.cz</a>
Výsledek na webu
<a href="https://msed.vse.cz/msed_2018/sbornik/toc.html" target="_blank" >https://msed.vse.cz/msed_2018/sbornik/toc.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PREHISTORY OF THE INFINITESIMAL CALCULUS
Popis výsledku v původním jazyce
The discovery of infinitesimal calculus (one of the most important products of human spirit of all times) is usually attributed to English mathematician and physicist Newton and to German mathematician and philosopher Leibniz. However, the problems of measure of change and of limits had been approached and pondered upon by a range of scholars long before them in the past. This article deals with the developments of this issue from the ancient Greek scholar Archimedes who (although ancient Greeks were scared stiff of infinity) probably lay the foundations of integral calculus by the exhaustion method. In Middle Ages, the considerations of infinitely small quantities caught the eyes of Nemorarius, Bradwardin, and Oresme. At the turn of the 16th and 17th centuries the considerations of infinitesimal calculus were on agenda of Kepler and Galilei. And then there followed the era of Newton and Leibnitz who realized that differential calculus and integral calculus are mutually opposing procedures.
Název v anglickém jazyce
PREHISTORY OF THE INFINITESIMAL CALCULUS
Popis výsledku anglicky
The discovery of infinitesimal calculus (one of the most important products of human spirit of all times) is usually attributed to English mathematician and physicist Newton and to German mathematician and philosopher Leibniz. However, the problems of measure of change and of limits had been approached and pondered upon by a range of scholars long before them in the past. This article deals with the developments of this issue from the ancient Greek scholar Archimedes who (although ancient Greeks were scared stiff of infinity) probably lay the foundations of integral calculus by the exhaustion method. In Middle Ages, the considerations of infinitely small quantities caught the eyes of Nemorarius, Bradwardin, and Oresme. At the turn of the 16th and 17th centuries the considerations of infinitesimal calculus were on agenda of Kepler and Galilei. And then there followed the era of Newton and Leibnitz who realized that differential calculus and integral calculus are mutually opposing procedures.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 12th International Days of Statistics and Economics
ISBN
978-80-87990-14-8
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
297-306
Název nakladatele
Melandrium
Místo vydání
Slaný
Místo konání akce
Praha
Datum konání akce
6. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—