Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Demand forecasting: AI-based, statistical and hybrid models vs practice-based models - the case of SMEs and large enterprises

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F04130081%3A_____%2F22%3AN0000006" target="_blank" >RIV/04130081:_____/22:N0000006 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27510/22:10251144

  • Výsledek na webu

    <a href="https://www.economics-sociology.eu/?926,en_demand-forecasting-ai-based-statistical-and-hybrid-models-vs-practice-based-models-the-case-of-smes-and-large-enterprises" target="_blank" >https://www.economics-sociology.eu/?926,en_demand-forecasting-ai-based-statistical-and-hybrid-models-vs-practice-based-models-the-case-of-smes-and-large-enterprises</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14254/2071-789X.2022/15-4/2" target="_blank" >10.14254/2071-789X.2022/15-4/2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Demand forecasting: AI-based, statistical and hybrid models vs practice-based models - the case of SMEs and large enterprises

  • Popis výsledku v původním jazyce

    Demand forecasting is one of the biggest challenges of post-pandemic logistics. It appears that logistics management based on demand prediction can be a suitable alternative to the just-in-time concept. This study aims to identify the effectiveness of AI-based and statistical forecasting models versus practice-based models for SMEs and large enterprises in practice. The study compares the effectiveness of the practice-based Prophet model with the statistical forecasting models, models based on artificial intelligence, and hybrid models developed in the academic environment. Since most of the hybrid models, and the ones based on artificial intelligence, were developed within the last ten years, the study also answers the question of whether the new models have better accuracy than the older ones. The models are evaluated using a multicriteria approach with different weight settings for SMEs and large enterprises. The results show that the Prophet model has higher accuracy than the other models on most time series. At the same time, the Prophet model is slightly less computationally demanding than hybrid models and models based on artificial neural networks. On the other hand, the results of the multicriteria evaluation show that while statistical methods are more suitable for SMEs, the prophet forecasting method is very effective in the case of large enterprises with sufficient computing power and trained predictive analysts.

  • Název v anglickém jazyce

    Demand forecasting: AI-based, statistical and hybrid models vs practice-based models - the case of SMEs and large enterprises

  • Popis výsledku anglicky

    Demand forecasting is one of the biggest challenges of post-pandemic logistics. It appears that logistics management based on demand prediction can be a suitable alternative to the just-in-time concept. This study aims to identify the effectiveness of AI-based and statistical forecasting models versus practice-based models for SMEs and large enterprises in practice. The study compares the effectiveness of the practice-based Prophet model with the statistical forecasting models, models based on artificial intelligence, and hybrid models developed in the academic environment. Since most of the hybrid models, and the ones based on artificial intelligence, were developed within the last ten years, the study also answers the question of whether the new models have better accuracy than the older ones. The models are evaluated using a multicriteria approach with different weight settings for SMEs and large enterprises. The results show that the Prophet model has higher accuracy than the other models on most time series. At the same time, the Prophet model is slightly less computationally demanding than hybrid models and models based on artificial neural networks. On the other hand, the results of the multicriteria evaluation show that while statistical methods are more suitable for SMEs, the prophet forecasting method is very effective in the case of large enterprises with sufficient computing power and trained predictive analysts.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Economics and Sociology

  • ISSN

    2071-789X

  • e-ISSN

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    24

  • Strana od-do

    39-62

  • Kód UT WoS článku

    000915274100002

  • EID výsledku v databázi Scopus

    2-s2.0-85145176542