Demand forecasting: AI-based, statistical and hybrid models vs practice-based models - the case of SMEs and large enterprises
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F04130081%3A_____%2F22%3AN0000006" target="_blank" >RIV/04130081:_____/22:N0000006 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27510/22:10251144
Výsledek na webu
<a href="https://www.economics-sociology.eu/?926,en_demand-forecasting-ai-based-statistical-and-hybrid-models-vs-practice-based-models-the-case-of-smes-and-large-enterprises" target="_blank" >https://www.economics-sociology.eu/?926,en_demand-forecasting-ai-based-statistical-and-hybrid-models-vs-practice-based-models-the-case-of-smes-and-large-enterprises</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14254/2071-789X.2022/15-4/2" target="_blank" >10.14254/2071-789X.2022/15-4/2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Demand forecasting: AI-based, statistical and hybrid models vs practice-based models - the case of SMEs and large enterprises
Popis výsledku v původním jazyce
Demand forecasting is one of the biggest challenges of post-pandemic logistics. It appears that logistics management based on demand prediction can be a suitable alternative to the just-in-time concept. This study aims to identify the effectiveness of AI-based and statistical forecasting models versus practice-based models for SMEs and large enterprises in practice. The study compares the effectiveness of the practice-based Prophet model with the statistical forecasting models, models based on artificial intelligence, and hybrid models developed in the academic environment. Since most of the hybrid models, and the ones based on artificial intelligence, were developed within the last ten years, the study also answers the question of whether the new models have better accuracy than the older ones. The models are evaluated using a multicriteria approach with different weight settings for SMEs and large enterprises. The results show that the Prophet model has higher accuracy than the other models on most time series. At the same time, the Prophet model is slightly less computationally demanding than hybrid models and models based on artificial neural networks. On the other hand, the results of the multicriteria evaluation show that while statistical methods are more suitable for SMEs, the prophet forecasting method is very effective in the case of large enterprises with sufficient computing power and trained predictive analysts.
Název v anglickém jazyce
Demand forecasting: AI-based, statistical and hybrid models vs practice-based models - the case of SMEs and large enterprises
Popis výsledku anglicky
Demand forecasting is one of the biggest challenges of post-pandemic logistics. It appears that logistics management based on demand prediction can be a suitable alternative to the just-in-time concept. This study aims to identify the effectiveness of AI-based and statistical forecasting models versus practice-based models for SMEs and large enterprises in practice. The study compares the effectiveness of the practice-based Prophet model with the statistical forecasting models, models based on artificial intelligence, and hybrid models developed in the academic environment. Since most of the hybrid models, and the ones based on artificial intelligence, were developed within the last ten years, the study also answers the question of whether the new models have better accuracy than the older ones. The models are evaluated using a multicriteria approach with different weight settings for SMEs and large enterprises. The results show that the Prophet model has higher accuracy than the other models on most time series. At the same time, the Prophet model is slightly less computationally demanding than hybrid models and models based on artificial neural networks. On the other hand, the results of the multicriteria evaluation show that while statistical methods are more suitable for SMEs, the prophet forecasting method is very effective in the case of large enterprises with sufficient computing power and trained predictive analysts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Economics and Sociology
ISSN
2071-789X
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
24
Strana od-do
39-62
Kód UT WoS článku
000915274100002
EID výsledku v databázi Scopus
2-s2.0-85145176542