Reinforcement Learning-Based Routing Protocols in Vehicular Ad Hoc Networks for Intelligent Transport System (ITS): A Survey
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F04274644%3A_____%2F22%3A%230000916" target="_blank" >RIV/04274644:_____/22:#0000916 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/10/24/4673" target="_blank" >https://www.mdpi.com/2227-7390/10/24/4673</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10244673" target="_blank" >10.3390/math10244673</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reinforcement Learning-Based Routing Protocols in Vehicular Ad Hoc Networks for Intelligent Transport System (ITS): A Survey
Popis výsledku v původním jazyce
Today, the use of safety solutions in Intelligent Transportation Systems (ITS) is a serious challenge because of novel progress in wireless technologies and the high number of road accidents. Vehicular ad hoc network (VANET) is a momentous element in this system because they can improve safety and efficiency in ITS. In this network, vehicles act as moving nodes and work with other nodes within their communication range. Due to high-dynamic vehicles and their different speeds in this network, links between vehicles are valid for a short time interval. Therefore, routing is a challenging work in these networks. Recently, reinforcement learning (RL) plays a significant role in developing routing algorithms for VANET. In this paper, we review reinforcement learning and its characteristics and study how to use this technique for creating routing protocols in VANETs. We propose a categorization of RL-based routing schemes in these networks. This paper helps researchers to understand how to design RL-based routing algorithms in VANET and improve the existing methods by understanding the challenges and opportunities in this area.
Název v anglickém jazyce
Reinforcement Learning-Based Routing Protocols in Vehicular Ad Hoc Networks for Intelligent Transport System (ITS): A Survey
Popis výsledku anglicky
Today, the use of safety solutions in Intelligent Transportation Systems (ITS) is a serious challenge because of novel progress in wireless technologies and the high number of road accidents. Vehicular ad hoc network (VANET) is a momentous element in this system because they can improve safety and efficiency in ITS. In this network, vehicles act as moving nodes and work with other nodes within their communication range. Due to high-dynamic vehicles and their different speeds in this network, links between vehicles are valid for a short time interval. Therefore, routing is a challenging work in these networks. Recently, reinforcement learning (RL) plays a significant role in developing routing algorithms for VANET. In this paper, we review reinforcement learning and its characteristics and study how to use this technique for creating routing protocols in VANETs. We propose a categorization of RL-based routing schemes in these networks. This paper helps researchers to understand how to design RL-based routing algorithms in VANET and improve the existing methods by understanding the challenges and opportunities in this area.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
24
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
45
Strana od-do
1-45
Kód UT WoS článku
000902593700001
EID výsledku v databázi Scopus
2-s2.0-85144670368