MoDANet: Multi-task Deep Network for Joint Automatic Modulation Classification and Direction of Arrival Estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25547526%3A_____%2F21%3AN0000004" target="_blank" >RIV/25547526:_____/21:N0000004 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9632584" target="_blank" >https://ieeexplore.ieee.org/document/9632584</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LCOMM.2021.3132018" target="_blank" >10.1109/LCOMM.2021.3132018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MoDANet: Multi-task Deep Network for Joint Automatic Modulation Classification and Direction of Arrival Estimation
Popis výsledku v původním jazyce
In this letter, a multi-task deep convolutional neural network, namely MoDANet, is proposed to perform modulation classification and DOA estimation simultaneously. In particular, the network architecture is designed with multiple residual modules, which tackle the vanishing gradient problem. The multi-task learning (MTL) efficiency of MoDANet was evaluated with different variants of Y-shaped connection and fine-tuning some hyper-parameters of the deep network. As a result, MoDANet with one shared residual module using more filters, larger filter size, and longer signal length can achieve better performance of modulation classification and DOA estimation, but those might result in higher computational complexity. Therefore, choosing these parameters to attain a good trade-off between accuracy and computational cost is important, especially for resource-constrained devices. The network is investigated with two typical propagation channel models, including Pedestrian A and Vehicular A, to show the effect of those channels on the efficiency of the network. Remarkably, our work is the first DL-based MTL model to handle two unrelated tasks of modulation classification and DOA estimation.
Název v anglickém jazyce
MoDANet: Multi-task Deep Network for Joint Automatic Modulation Classification and Direction of Arrival Estimation
Popis výsledku anglicky
In this letter, a multi-task deep convolutional neural network, namely MoDANet, is proposed to perform modulation classification and DOA estimation simultaneously. In particular, the network architecture is designed with multiple residual modules, which tackle the vanishing gradient problem. The multi-task learning (MTL) efficiency of MoDANet was evaluated with different variants of Y-shaped connection and fine-tuning some hyper-parameters of the deep network. As a result, MoDANet with one shared residual module using more filters, larger filter size, and longer signal length can achieve better performance of modulation classification and DOA estimation, but those might result in higher computational complexity. Therefore, choosing these parameters to attain a good trade-off between accuracy and computational cost is important, especially for resource-constrained devices. The network is investigated with two typical propagation channel models, including Pedestrian A and Vehicular A, to show the effect of those channels on the efficiency of the network. Remarkably, our work is the first DL-based MTL model to handle two unrelated tasks of modulation classification and DOA estimation.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/TM02000035" target="_blank" >TM02000035: Pokroková klasifikace signálů (NEOCLASSIG) pro radio-průzkumné systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.
Údaje specifické pro druh výsledku
Název periodika
MoDANet: Multi-Task Deep Network for Joint Automatic Modulation Classification and Direction of Arrival Estimation
ISSN
1089-7798
e-ISSN
1558-2558
Svazek periodika
neuveden
Číslo periodika v rámci svazku
01 December 2021
Stát vydavatele periodika
VN - Vietnamská socialistická republika
Počet stran výsledku
5
Strana od-do
335 - 339
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85120580975