Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An improved multi-task least squares twin support vector machine

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43897768" target="_blank" >RIV/44555601:13440/23:43897768 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10472-023-09877-8" target="_blank" >https://link.springer.com/article/10.1007/s10472-023-09877-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10472-023-09877-8" target="_blank" >10.1007/s10472-023-09877-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An improved multi-task least squares twin support vector machine

  • Popis výsledku v původním jazyce

    In recent years, multi-task learning (MTL) has become a popular field in machine learning and has a key role in various domains. Sharing knowledge across tasks in MTL can improve the performance of learning algorithms and enhance their generalization capability. A new approach called the multi-task least squares twin support vector machine (MTLS-TSVM) was recently proposed as a least squares variant of the direct multi-task twin support vector machine (DMTSVM). Unlike DMTSVM, which solves two quadratic programming problems, MTLS-TSVM solves two linear systems of equations, resulting in a reduced computational time. In this paper, we propose an enhanced version of MTLS-TSVM called the improved multi-task least squares twin support vector machine (IMTLS-TSVM). IMTLS-TSVM offers a significant advantage over MTLS-TSVM by operating based on the empirical risk minimization principle, which allows for better generalization performance. The model achieves this by including regularization terms in its objective function, which helps control the model&apos;s complexity and prevent overfitting. We demonstrate the effectiveness of IMTLS-TSVM by comparing it to several single-task and multi-task learning algorithms on various real-world data sets. Our results highlight the superior performance of IMTLS-TSVM in addressing multi-task learning problems.

  • Název v anglickém jazyce

    An improved multi-task least squares twin support vector machine

  • Popis výsledku anglicky

    In recent years, multi-task learning (MTL) has become a popular field in machine learning and has a key role in various domains. Sharing knowledge across tasks in MTL can improve the performance of learning algorithms and enhance their generalization capability. A new approach called the multi-task least squares twin support vector machine (MTLS-TSVM) was recently proposed as a least squares variant of the direct multi-task twin support vector machine (DMTSVM). Unlike DMTSVM, which solves two quadratic programming problems, MTLS-TSVM solves two linear systems of equations, resulting in a reduced computational time. In this paper, we propose an enhanced version of MTLS-TSVM called the improved multi-task least squares twin support vector machine (IMTLS-TSVM). IMTLS-TSVM offers a significant advantage over MTLS-TSVM by operating based on the empirical risk minimization principle, which allows for better generalization performance. The model achieves this by including regularization terms in its objective function, which helps control the model&apos;s complexity and prevent overfitting. We demonstrate the effectiveness of IMTLS-TSVM by comparing it to several single-task and multi-task learning algorithms on various real-world data sets. Our results highlight the superior performance of IMTLS-TSVM in addressing multi-task learning problems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annals of mathematics and artificial intelligence

  • ISSN

    1012-2443

  • e-ISSN

    1573-7470

  • Svazek periodika

    2023

  • Číslo periodika v rámci svazku

    "neuvedeno"

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    21

  • Strana od-do

    "nestrankovano"

  • Kód UT WoS článku

    001037345700001

  • EID výsledku v databázi Scopus

    2-s2.0-85165955807