An improved multi-task least squares twin support vector machine
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43897768" target="_blank" >RIV/44555601:13440/23:43897768 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10472-023-09877-8" target="_blank" >https://link.springer.com/article/10.1007/s10472-023-09877-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10472-023-09877-8" target="_blank" >10.1007/s10472-023-09877-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An improved multi-task least squares twin support vector machine
Popis výsledku v původním jazyce
In recent years, multi-task learning (MTL) has become a popular field in machine learning and has a key role in various domains. Sharing knowledge across tasks in MTL can improve the performance of learning algorithms and enhance their generalization capability. A new approach called the multi-task least squares twin support vector machine (MTLS-TSVM) was recently proposed as a least squares variant of the direct multi-task twin support vector machine (DMTSVM). Unlike DMTSVM, which solves two quadratic programming problems, MTLS-TSVM solves two linear systems of equations, resulting in a reduced computational time. In this paper, we propose an enhanced version of MTLS-TSVM called the improved multi-task least squares twin support vector machine (IMTLS-TSVM). IMTLS-TSVM offers a significant advantage over MTLS-TSVM by operating based on the empirical risk minimization principle, which allows for better generalization performance. The model achieves this by including regularization terms in its objective function, which helps control the model's complexity and prevent overfitting. We demonstrate the effectiveness of IMTLS-TSVM by comparing it to several single-task and multi-task learning algorithms on various real-world data sets. Our results highlight the superior performance of IMTLS-TSVM in addressing multi-task learning problems.
Název v anglickém jazyce
An improved multi-task least squares twin support vector machine
Popis výsledku anglicky
In recent years, multi-task learning (MTL) has become a popular field in machine learning and has a key role in various domains. Sharing knowledge across tasks in MTL can improve the performance of learning algorithms and enhance their generalization capability. A new approach called the multi-task least squares twin support vector machine (MTLS-TSVM) was recently proposed as a least squares variant of the direct multi-task twin support vector machine (DMTSVM). Unlike DMTSVM, which solves two quadratic programming problems, MTLS-TSVM solves two linear systems of equations, resulting in a reduced computational time. In this paper, we propose an enhanced version of MTLS-TSVM called the improved multi-task least squares twin support vector machine (IMTLS-TSVM). IMTLS-TSVM offers a significant advantage over MTLS-TSVM by operating based on the empirical risk minimization principle, which allows for better generalization performance. The model achieves this by including regularization terms in its objective function, which helps control the model's complexity and prevent overfitting. We demonstrate the effectiveness of IMTLS-TSVM by comparing it to several single-task and multi-task learning algorithms on various real-world data sets. Our results highlight the superior performance of IMTLS-TSVM in addressing multi-task learning problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of mathematics and artificial intelligence
ISSN
1012-2443
e-ISSN
1573-7470
Svazek periodika
2023
Číslo periodika v rámci svazku
"neuvedeno"
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
"nestrankovano"
Kód UT WoS článku
001037345700001
EID výsledku v databázi Scopus
2-s2.0-85165955807